YES We show the termination of the TRS R: min(X,|0|()) -> X min(s(X),s(Y)) -> min(X,Y) quot(|0|(),s(Y)) -> |0|() quot(s(X),s(Y)) -> s(quot(min(X,Y),s(Y))) log(s(|0|())) -> |0|() log(s(s(X))) -> s(log(s(quot(X,s(s(|0|())))))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: min#(s(X),s(Y)) -> min#(X,Y) p2: quot#(s(X),s(Y)) -> quot#(min(X,Y),s(Y)) p3: quot#(s(X),s(Y)) -> min#(X,Y) p4: log#(s(s(X))) -> log#(s(quot(X,s(s(|0|()))))) p5: log#(s(s(X))) -> quot#(X,s(s(|0|()))) and R consists of: r1: min(X,|0|()) -> X r2: min(s(X),s(Y)) -> min(X,Y) r3: quot(|0|(),s(Y)) -> |0|() r4: quot(s(X),s(Y)) -> s(quot(min(X,Y),s(Y))) r5: log(s(|0|())) -> |0|() r6: log(s(s(X))) -> s(log(s(quot(X,s(s(|0|())))))) The estimated dependency graph contains the following SCCs: {p4} {p2} {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: log#(s(s(X))) -> log#(s(quot(X,s(s(|0|()))))) and R consists of: r1: min(X,|0|()) -> X r2: min(s(X),s(Y)) -> min(X,Y) r3: quot(|0|(),s(Y)) -> |0|() r4: quot(s(X),s(Y)) -> s(quot(min(X,Y),s(Y))) r5: log(s(|0|())) -> |0|() r6: log(s(s(X))) -> s(log(s(quot(X,s(s(|0|())))))) The set of usable rules consists of r1, r2, r3, r4 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: log#_A(x1) = ((1,1),(0,0)) x1 s_A(x1) = x1 + (3,0) quot_A(x1,x2) = x1 + (1,1) |0|_A() = (1,1) min_A(x1,x2) = ((1,0),(1,1)) x1 + ((0,0),(1,0)) x2 + (0,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: log#_A(x1) = (0,0) s_A(x1) = (1,1) quot_A(x1,x2) = (2,1) |0|_A() = (1,2) min_A(x1,x2) = ((1,1),(0,1)) x1 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: log#_A(x1) = (0,0) s_A(x1) = (3,2) quot_A(x1,x2) = (2,1) |0|_A() = (1,1) min_A(x1,x2) = (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: quot#(s(X),s(Y)) -> quot#(min(X,Y),s(Y)) and R consists of: r1: min(X,|0|()) -> X r2: min(s(X),s(Y)) -> min(X,Y) r3: quot(|0|(),s(Y)) -> |0|() r4: quot(s(X),s(Y)) -> s(quot(min(X,Y),s(Y))) r5: log(s(|0|())) -> |0|() r6: log(s(s(X))) -> s(log(s(quot(X,s(s(|0|())))))) The set of usable rules consists of r1, r2 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: quot#_A(x1,x2) = ((1,0),(1,0)) x1 s_A(x1) = ((1,1),(0,1)) x1 + (2,1) min_A(x1,x2) = ((1,1),(1,1)) x1 + (1,1) |0|_A() = (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: quot#_A(x1,x2) = ((1,0),(1,1)) x1 s_A(x1) = ((1,1),(1,1)) x1 + (2,1) min_A(x1,x2) = ((1,1),(1,1)) x1 + (1,1) |0|_A() = (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: quot#_A(x1,x2) = ((1,0),(1,1)) x1 s_A(x1) = ((1,1),(1,1)) x1 + (2,1) min_A(x1,x2) = ((1,1),(1,1)) x1 + (1,1) |0|_A() = (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: min#(s(X),s(Y)) -> min#(X,Y) and R consists of: r1: min(X,|0|()) -> X r2: min(s(X),s(Y)) -> min(X,Y) r3: quot(|0|(),s(Y)) -> |0|() r4: quot(s(X),s(Y)) -> s(quot(min(X,Y),s(Y))) r5: log(s(|0|())) -> |0|() r6: log(s(s(X))) -> s(log(s(quot(X,s(s(|0|())))))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: min#_A(x1,x2) = ((1,1),(0,0)) x1 + ((1,1),(1,1)) x2 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: min#_A(x1,x2) = ((1,0),(1,1)) x1 + x2 s_A(x1) = ((1,0),(1,1)) x1 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: min#_A(x1,x2) = ((0,0),(1,0)) x1 + ((1,1),(1,1)) x2 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.