YES We show the termination of the TRS R: plus(s(X),plus(Y,Z)) -> plus(X,plus(s(s(Y)),Z)) plus(s(X1),plus(X2,plus(X3,X4))) -> plus(X1,plus(X3,plus(X2,X4))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: plus#(s(X),plus(Y,Z)) -> plus#(X,plus(s(s(Y)),Z)) p2: plus#(s(X),plus(Y,Z)) -> plus#(s(s(Y)),Z) p3: plus#(s(X1),plus(X2,plus(X3,X4))) -> plus#(X1,plus(X3,plus(X2,X4))) p4: plus#(s(X1),plus(X2,plus(X3,X4))) -> plus#(X3,plus(X2,X4)) p5: plus#(s(X1),plus(X2,plus(X3,X4))) -> plus#(X2,X4) and R consists of: r1: plus(s(X),plus(Y,Z)) -> plus(X,plus(s(s(Y)),Z)) r2: plus(s(X1),plus(X2,plus(X3,X4))) -> plus(X1,plus(X3,plus(X2,X4))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: plus#(s(X),plus(Y,Z)) -> plus#(X,plus(s(s(Y)),Z)) p2: plus#(s(X1),plus(X2,plus(X3,X4))) -> plus#(X2,X4) p3: plus#(s(X1),plus(X2,plus(X3,X4))) -> plus#(X3,plus(X2,X4)) p4: plus#(s(X1),plus(X2,plus(X3,X4))) -> plus#(X1,plus(X3,plus(X2,X4))) p5: plus#(s(X),plus(Y,Z)) -> plus#(s(s(Y)),Z) and R consists of: r1: plus(s(X),plus(Y,Z)) -> plus(X,plus(s(s(Y)),Z)) r2: plus(s(X1),plus(X2,plus(X3,X4))) -> plus(X1,plus(X3,plus(X2,X4))) The set of usable rules consists of r1, r2 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: plus#_A(x1,x2) = ((0,1),(0,0)) x2 s_A(x1) = x1 + (1,0) plus_A(x1,x2) = x2 + (0,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: plus#_A(x1,x2) = (0,0) s_A(x1) = x1 + (1,1) plus_A(x1,x2) = (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: plus#_A(x1,x2) = (0,0) s_A(x1) = ((0,0),(1,1)) x1 + (1,1) plus_A(x1,x2) = (1,1) The next rules are strictly ordered: p2, p3, p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: plus#(s(X),plus(Y,Z)) -> plus#(X,plus(s(s(Y)),Z)) p2: plus#(s(X1),plus(X2,plus(X3,X4))) -> plus#(X1,plus(X3,plus(X2,X4))) and R consists of: r1: plus(s(X),plus(Y,Z)) -> plus(X,plus(s(s(Y)),Z)) r2: plus(s(X1),plus(X2,plus(X3,X4))) -> plus(X1,plus(X3,plus(X2,X4))) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: plus#(s(X),plus(Y,Z)) -> plus#(X,plus(s(s(Y)),Z)) p2: plus#(s(X1),plus(X2,plus(X3,X4))) -> plus#(X1,plus(X3,plus(X2,X4))) and R consists of: r1: plus(s(X),plus(Y,Z)) -> plus(X,plus(s(s(Y)),Z)) r2: plus(s(X1),plus(X2,plus(X3,X4))) -> plus(X1,plus(X3,plus(X2,X4))) The set of usable rules consists of r1, r2 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: plus#_A(x1,x2) = ((1,1),(1,0)) x1 + x2 s_A(x1) = x1 + (1,1) plus_A(x1,x2) = x2 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: plus#_A(x1,x2) = x1 + ((0,0),(1,1)) x2 s_A(x1) = ((0,0),(1,1)) x1 + (1,1) plus_A(x1,x2) = (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: plus#_A(x1,x2) = (0,0) s_A(x1) = (1,1) plus_A(x1,x2) = (1,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.