YES We show the termination of the TRS R: p(m,n,s(r)) -> p(m,r,n) p(m,s(n),|0|()) -> p(|0|(),n,m) p(m,|0|(),|0|()) -> m -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: p#(m,n,s(r)) -> p#(m,r,n) p2: p#(m,s(n),|0|()) -> p#(|0|(),n,m) and R consists of: r1: p(m,n,s(r)) -> p(m,r,n) r2: p(m,s(n),|0|()) -> p(|0|(),n,m) r3: p(m,|0|(),|0|()) -> m The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: p#(m,n,s(r)) -> p#(m,r,n) p2: p#(m,s(n),|0|()) -> p#(|0|(),n,m) and R consists of: r1: p(m,n,s(r)) -> p(m,r,n) r2: p(m,s(n),|0|()) -> p(|0|(),n,m) r3: p(m,|0|(),|0|()) -> m The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: p#_A(x1,x2,x3) = x1 + ((1,1),(0,0)) x2 + x3 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) |0|_A() = (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: p#_A(x1,x2,x3) = x1 + ((1,1),(0,0)) x2 + ((1,0),(1,1)) x3 s_A(x1) = ((0,1),(1,1)) x1 + (1,1) |0|_A() = (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: p#_A(x1,x2,x3) = ((0,0),(1,0)) x1 + ((0,0),(1,0)) x2 + ((0,1),(0,0)) x3 s_A(x1) = (1,1) |0|_A() = (2,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.