YES We show the termination of the TRS R: p(a(x0),p(a(a(a(x1))),x2)) -> p(a(x2),p(a(a(b(x0))),x2)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: p#(a(x0),p(a(a(a(x1))),x2)) -> p#(a(x2),p(a(a(b(x0))),x2)) p2: p#(a(x0),p(a(a(a(x1))),x2)) -> p#(a(a(b(x0))),x2) and R consists of: r1: p(a(x0),p(a(a(a(x1))),x2)) -> p(a(x2),p(a(a(b(x0))),x2)) The estimated dependency graph contains the following SCCs: {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: p#(a(x0),p(a(a(a(x1))),x2)) -> p#(a(a(b(x0))),x2) and R consists of: r1: p(a(x0),p(a(a(a(x1))),x2)) -> p(a(x2),p(a(a(b(x0))),x2)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: p#_A(x1,x2) = x1 + ((1,1),(1,0)) x2 a_A(x1) = (0,1) p_A(x1,x2) = ((1,1),(1,1)) x2 + (1,0) b_A(x1) = (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: p#_A(x1,x2) = ((1,1),(0,0)) x1 a_A(x1) = (1,1) p_A(x1,x2) = (1,1) b_A(x1) = (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: p#_A(x1,x2) = (0,0) a_A(x1) = (1,1) p_A(x1,x2) = (1,1) b_A(x1) = (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.