YES We show the termination of the TRS R: a(a(f(b(),a(x)))) -> f(a(a(a(x))),b()) a(a(x)) -> f(b(),a(f(a(x),b()))) f(a(x),b()) -> f(b(),a(x)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a#(a(f(b(),a(x)))) -> f#(a(a(a(x))),b()) p2: a#(a(f(b(),a(x)))) -> a#(a(a(x))) p3: a#(a(f(b(),a(x)))) -> a#(a(x)) p4: a#(a(x)) -> f#(b(),a(f(a(x),b()))) p5: a#(a(x)) -> a#(f(a(x),b())) p6: a#(a(x)) -> f#(a(x),b()) p7: f#(a(x),b()) -> f#(b(),a(x)) and R consists of: r1: a(a(f(b(),a(x)))) -> f(a(a(a(x))),b()) r2: a(a(x)) -> f(b(),a(f(a(x),b()))) r3: f(a(x),b()) -> f(b(),a(x)) The estimated dependency graph contains the following SCCs: {p2, p3, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a#(a(x)) -> a#(f(a(x),b())) p2: a#(a(f(b(),a(x)))) -> a#(a(x)) p3: a#(a(f(b(),a(x)))) -> a#(a(a(x))) and R consists of: r1: a(a(f(b(),a(x)))) -> f(a(a(a(x))),b()) r2: a(a(x)) -> f(b(),a(f(a(x),b()))) r3: f(a(x),b()) -> f(b(),a(x)) The set of usable rules consists of r1, r2, r3 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: a#_A(x1) = ((0,1),(0,0)) x1 a_A(x1) = x1 + (1,1) f_A(x1,x2) = x1 + x2 + (1,0) b_A() = (1,0) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: a#_A(x1) = (0,0) a_A(x1) = ((0,1),(1,1)) x1 + (1,1) f_A(x1,x2) = (3,4) b_A() = (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: a#_A(x1) = (0,0) a_A(x1) = (1,1) f_A(x1,x2) = (2,2) b_A() = (1,1) The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a#(a(x)) -> a#(f(a(x),b())) p2: a#(a(f(b(),a(x)))) -> a#(a(a(x))) and R consists of: r1: a(a(f(b(),a(x)))) -> f(a(a(a(x))),b()) r2: a(a(x)) -> f(b(),a(f(a(x),b()))) r3: f(a(x),b()) -> f(b(),a(x)) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a#(a(x)) -> a#(f(a(x),b())) p2: a#(a(f(b(),a(x)))) -> a#(a(a(x))) and R consists of: r1: a(a(f(b(),a(x)))) -> f(a(a(a(x))),b()) r2: a(a(x)) -> f(b(),a(f(a(x),b()))) r3: f(a(x),b()) -> f(b(),a(x)) The set of usable rules consists of r1, r2, r3 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: a#_A(x1) = ((1,1),(0,0)) x1 a_A(x1) = (1,2) f_A(x1,x2) = ((0,0),(1,0)) x1 + x2 b_A() = (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: a#_A(x1) = ((0,1),(0,0)) x1 a_A(x1) = (1,1) f_A(x1,x2) = x2 b_A() = (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: a#_A(x1) = (0,0) a_A(x1) = (2,1) f_A(x1,x2) = ((0,1),(0,1)) x2 b_A() = (1,1) The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a#(a(f(b(),a(x)))) -> a#(a(a(x))) and R consists of: r1: a(a(f(b(),a(x)))) -> f(a(a(a(x))),b()) r2: a(a(x)) -> f(b(),a(f(a(x),b()))) r3: f(a(x),b()) -> f(b(),a(x)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a#(a(f(b(),a(x)))) -> a#(a(a(x))) and R consists of: r1: a(a(f(b(),a(x)))) -> f(a(a(a(x))),b()) r2: a(a(x)) -> f(b(),a(f(a(x),b()))) r3: f(a(x),b()) -> f(b(),a(x)) The set of usable rules consists of r1, r2, r3 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: a#_A(x1) = x1 a_A(x1) = ((0,1),(1,0)) x1 + (1,1) f_A(x1,x2) = x1 + x2 b_A() = (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: a#_A(x1) = (0,0) a_A(x1) = (1,0) f_A(x1,x2) = (2,1) b_A() = (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: a#_A(x1) = (0,0) a_A(x1) = (1,0) f_A(x1,x2) = (2,1) b_A() = (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.