YES We show the termination of the TRS R: app(id(),x) -> x app(add(),|0|()) -> id() app(app(add(),app(s(),x)),y) -> app(s(),app(app(add(),x),y)) app(app(map(),f),nil()) -> nil() app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(add(),app(s(),x)),y) -> app#(s(),app(app(add(),x),y)) p2: app#(app(add(),app(s(),x)),y) -> app#(app(add(),x),y) p3: app#(app(add(),app(s(),x)),y) -> app#(add(),x) p4: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(app(cons(),app(f,x)),app(app(map(),f),xs)) p5: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(cons(),app(f,x)) p6: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(f,x) p7: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(app(map(),f),xs) and R consists of: r1: app(id(),x) -> x r2: app(add(),|0|()) -> id() r3: app(app(add(),app(s(),x)),y) -> app(s(),app(app(add(),x),y)) r4: app(app(map(),f),nil()) -> nil() r5: app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs)) The estimated dependency graph contains the following SCCs: {p2, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(add(),app(s(),x)),y) -> app#(app(add(),x),y) p2: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(app(map(),f),xs) p3: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(f,x) and R consists of: r1: app(id(),x) -> x r2: app(add(),|0|()) -> id() r3: app(app(add(),app(s(),x)),y) -> app(s(),app(app(add(),x),y)) r4: app(app(map(),f),nil()) -> nil() r5: app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs)) The set of usable rules consists of r2 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: app#_A(x1,x2) = ((0,0),(1,1)) x1 + ((1,0),(1,0)) x2 app_A(x1,x2) = x1 + ((1,1),(0,0)) x2 + (0,1) add_A() = (0,1) s_A() = (1,1) map_A() = (0,1) cons_A() = (1,1) |0|_A() = (1,1) id_A() = (0,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: app#_A(x1,x2) = ((1,1),(1,1)) x2 app_A(x1,x2) = x1 + ((1,1),(1,0)) x2 add_A() = (1,1) s_A() = (1,1) map_A() = (1,1) cons_A() = (1,1) |0|_A() = (0,1) id_A() = (3,2) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: app#_A(x1,x2) = ((1,1),(1,1)) x2 app_A(x1,x2) = ((1,1),(0,0)) x1 + ((0,1),(1,0)) x2 + (0,1) add_A() = (1,1) s_A() = (1,1) map_A() = (1,1) cons_A() = (1,1) |0|_A() = (1,1) id_A() = (4,3) The next rules are strictly ordered: p2, p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(add(),app(s(),x)),y) -> app#(app(add(),x),y) and R consists of: r1: app(id(),x) -> x r2: app(add(),|0|()) -> id() r3: app(app(add(),app(s(),x)),y) -> app(s(),app(app(add(),x),y)) r4: app(app(map(),f),nil()) -> nil() r5: app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(add(),app(s(),x)),y) -> app#(app(add(),x),y) and R consists of: r1: app(id(),x) -> x r2: app(add(),|0|()) -> id() r3: app(app(add(),app(s(),x)),y) -> app(s(),app(app(add(),x),y)) r4: app(app(map(),f),nil()) -> nil() r5: app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs)) The set of usable rules consists of r2 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: app#_A(x1,x2) = x1 app_A(x1,x2) = x2 + (1,1) add_A() = (1,1) s_A() = (1,1) |0|_A() = (1,0) id_A() = (0,0) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: app#_A(x1,x2) = (0,0) app_A(x1,x2) = (1,1) add_A() = (1,1) s_A() = (1,1) |0|_A() = (1,1) id_A() = (2,2) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: app#_A(x1,x2) = (0,0) app_A(x1,x2) = (1,1) add_A() = (1,1) s_A() = (1,1) |0|_A() = (1,1) id_A() = (2,2) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.