YES We show the termination of the TRS R: h(c(x,y),c(s(z),z),t(w)) -> h(z,c(y,x),t(t(c(x,c(y,t(w)))))) h(x,c(y,z),t(w)) -> h(c(s(y),x),z,t(c(t(w),w))) h(c(s(x),c(s(|0|()),y)),z,t(x)) -> h(y,c(s(|0|()),c(x,z)),t(t(c(x,s(x))))) t(t(x)) -> t(c(t(x),x)) t(x) -> x t(x) -> c(|0|(),c(|0|(),c(|0|(),c(|0|(),c(|0|(),x))))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: h#(c(x,y),c(s(z),z),t(w)) -> h#(z,c(y,x),t(t(c(x,c(y,t(w)))))) p2: h#(c(x,y),c(s(z),z),t(w)) -> t#(t(c(x,c(y,t(w))))) p3: h#(c(x,y),c(s(z),z),t(w)) -> t#(c(x,c(y,t(w)))) p4: h#(x,c(y,z),t(w)) -> h#(c(s(y),x),z,t(c(t(w),w))) p5: h#(x,c(y,z),t(w)) -> t#(c(t(w),w)) p6: h#(c(s(x),c(s(|0|()),y)),z,t(x)) -> h#(y,c(s(|0|()),c(x,z)),t(t(c(x,s(x))))) p7: h#(c(s(x),c(s(|0|()),y)),z,t(x)) -> t#(t(c(x,s(x)))) p8: h#(c(s(x),c(s(|0|()),y)),z,t(x)) -> t#(c(x,s(x))) p9: t#(t(x)) -> t#(c(t(x),x)) and R consists of: r1: h(c(x,y),c(s(z),z),t(w)) -> h(z,c(y,x),t(t(c(x,c(y,t(w)))))) r2: h(x,c(y,z),t(w)) -> h(c(s(y),x),z,t(c(t(w),w))) r3: h(c(s(x),c(s(|0|()),y)),z,t(x)) -> h(y,c(s(|0|()),c(x,z)),t(t(c(x,s(x))))) r4: t(t(x)) -> t(c(t(x),x)) r5: t(x) -> x r6: t(x) -> c(|0|(),c(|0|(),c(|0|(),c(|0|(),c(|0|(),x))))) The estimated dependency graph contains the following SCCs: {p1, p4, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: h#(c(x,y),c(s(z),z),t(w)) -> h#(z,c(y,x),t(t(c(x,c(y,t(w)))))) p2: h#(c(s(x),c(s(|0|()),y)),z,t(x)) -> h#(y,c(s(|0|()),c(x,z)),t(t(c(x,s(x))))) p3: h#(x,c(y,z),t(w)) -> h#(c(s(y),x),z,t(c(t(w),w))) and R consists of: r1: h(c(x,y),c(s(z),z),t(w)) -> h(z,c(y,x),t(t(c(x,c(y,t(w)))))) r2: h(x,c(y,z),t(w)) -> h(c(s(y),x),z,t(c(t(w),w))) r3: h(c(s(x),c(s(|0|()),y)),z,t(x)) -> h(y,c(s(|0|()),c(x,z)),t(t(c(x,s(x))))) r4: t(t(x)) -> t(c(t(x),x)) r5: t(x) -> x r6: t(x) -> c(|0|(),c(|0|(),c(|0|(),c(|0|(),c(|0|(),x))))) The set of usable rules consists of r4, r5, r6 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: h#_A(x1,x2,x3) = x1 + x2 c_A(x1,x2) = x1 + x2 + (1,1) s_A(x1) = x1 + (0,1) t_A(x1) = ((1,1),(1,1)) x1 + (11,3) |0|_A() = (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: h#_A(x1,x2,x3) = ((1,0),(1,0)) x1 + ((0,1),(0,1)) x2 c_A(x1,x2) = x1 + x2 + (1,3) s_A(x1) = ((0,1),(0,0)) x1 + (1,1) t_A(x1) = x1 + (1,1) |0|_A() = (1,4) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: h#_A(x1,x2,x3) = ((1,1),(0,0)) x1 c_A(x1,x2) = ((0,1),(0,0)) x1 + ((1,1),(0,0)) x2 + (1,1) s_A(x1) = (1,1) t_A(x1) = (1,1) |0|_A() = (1,1) The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains.