YES We show the termination of the TRS R: top(sent(x)) -> top(check(rest(x))) rest(nil()) -> sent(nil()) rest(cons(x,y)) -> sent(y) check(sent(x)) -> sent(check(x)) check(rest(x)) -> rest(check(x)) check(cons(x,y)) -> cons(check(x),y) check(cons(x,y)) -> cons(x,check(y)) check(cons(x,y)) -> cons(x,y) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: top#(sent(x)) -> top#(check(rest(x))) p2: top#(sent(x)) -> check#(rest(x)) p3: top#(sent(x)) -> rest#(x) p4: check#(sent(x)) -> check#(x) p5: check#(rest(x)) -> rest#(check(x)) p6: check#(rest(x)) -> check#(x) p7: check#(cons(x,y)) -> check#(x) p8: check#(cons(x,y)) -> check#(y) and R consists of: r1: top(sent(x)) -> top(check(rest(x))) r2: rest(nil()) -> sent(nil()) r3: rest(cons(x,y)) -> sent(y) r4: check(sent(x)) -> sent(check(x)) r5: check(rest(x)) -> rest(check(x)) r6: check(cons(x,y)) -> cons(check(x),y) r7: check(cons(x,y)) -> cons(x,check(y)) r8: check(cons(x,y)) -> cons(x,y) The estimated dependency graph contains the following SCCs: {p1} {p4, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: top#(sent(x)) -> top#(check(rest(x))) and R consists of: r1: top(sent(x)) -> top(check(rest(x))) r2: rest(nil()) -> sent(nil()) r3: rest(cons(x,y)) -> sent(y) r4: check(sent(x)) -> sent(check(x)) r5: check(rest(x)) -> rest(check(x)) r6: check(cons(x,y)) -> cons(check(x),y) r7: check(cons(x,y)) -> cons(x,check(y)) r8: check(cons(x,y)) -> cons(x,y) The set of usable rules consists of r2, r3, r4, r5, r6, r7, r8 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: top#_A(x1) = ((1,1),(0,0)) x1 sent_A(x1) = ((1,0),(1,0)) x1 + (1,2) check_A(x1) = ((1,0),(1,0)) x1 + (0,1) rest_A(x1) = ((1,0),(1,0)) x1 + (1,2) nil_A() = (1,1) cons_A(x1,x2) = x2 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: top#_A(x1) = ((1,1),(0,0)) x1 sent_A(x1) = x1 + (5,0) check_A(x1) = x1 + (2,1) rest_A(x1) = ((0,1),(0,1)) x1 + (1,0) nil_A() = (0,5) cons_A(x1,x2) = (1,0) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: top#_A(x1) = ((1,1),(0,0)) x1 sent_A(x1) = (1,4) check_A(x1) = x1 + (1,1) rest_A(x1) = (2,4) nil_A() = (1,1) cons_A(x1,x2) = (0,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: check#(sent(x)) -> check#(x) p2: check#(cons(x,y)) -> check#(y) p3: check#(cons(x,y)) -> check#(x) p4: check#(rest(x)) -> check#(x) and R consists of: r1: top(sent(x)) -> top(check(rest(x))) r2: rest(nil()) -> sent(nil()) r3: rest(cons(x,y)) -> sent(y) r4: check(sent(x)) -> sent(check(x)) r5: check(rest(x)) -> rest(check(x)) r6: check(cons(x,y)) -> cons(check(x),y) r7: check(cons(x,y)) -> cons(x,check(y)) r8: check(cons(x,y)) -> cons(x,y) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: check#_A(x1) = ((1,1),(0,1)) x1 sent_A(x1) = ((1,1),(1,1)) x1 + (1,1) cons_A(x1,x2) = ((0,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) rest_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: check#_A(x1) = ((1,1),(1,1)) x1 sent_A(x1) = ((1,1),(1,1)) x1 + (1,1) cons_A(x1,x2) = ((1,1),(1,1)) x2 + (1,1) rest_A(x1) = ((1,1),(1,1)) x1 + (1,1) 3. matrix interpretations: carrier: N^2 order: standard order interpretations: check#_A(x1) = ((1,1),(1,1)) x1 sent_A(x1) = ((1,0),(1,1)) x1 + (1,1) cons_A(x1,x2) = ((1,1),(1,1)) x2 + (1,1) rest_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1, p2, p3, p4 We remove them from the problem. Then no dependency pair remains.