YES

We show the termination of the TRS R:

  times(x,plus(y,|1|())) -> plus(times(x,plus(y,times(|1|(),|0|()))),x)
  times(x,|1|()) -> x
  plus(x,|0|()) -> x
  times(x,|0|()) -> |0|()

-- SCC decomposition.

Consider the dependency pair problem (P, R), where P consists of

p1: times#(x,plus(y,|1|())) -> plus#(times(x,plus(y,times(|1|(),|0|()))),x)
p2: times#(x,plus(y,|1|())) -> times#(x,plus(y,times(|1|(),|0|())))
p3: times#(x,plus(y,|1|())) -> plus#(y,times(|1|(),|0|()))
p4: times#(x,plus(y,|1|())) -> times#(|1|(),|0|())

and R consists of:

r1: times(x,plus(y,|1|())) -> plus(times(x,plus(y,times(|1|(),|0|()))),x)
r2: times(x,|1|()) -> x
r3: plus(x,|0|()) -> x
r4: times(x,|0|()) -> |0|()

The estimated dependency graph contains the following SCCs:

  {p2}


-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: times#(x,plus(y,|1|())) -> times#(x,plus(y,times(|1|(),|0|())))

and R consists of:

r1: times(x,plus(y,|1|())) -> plus(times(x,plus(y,times(|1|(),|0|()))),x)
r2: times(x,|1|()) -> x
r3: plus(x,|0|()) -> x
r4: times(x,|0|()) -> |0|()

The set of usable rules consists of

  r3, r4

Take the reduction pair:

  lexicographic combination of reduction pairs:
  
    1. matrix interpretations:
    
      carrier: N^2
      order: standard order
      interpretations:
        times#_A(x1,x2) = ((1,1),(1,0)) x2
        plus_A(x1,x2) = x1 + x2 + (0,1)
        |1|_A() = (3,1)
        times_A(x1,x2) = x2 + (1,1)
        |0|_A() = (1,1)
    
    2. matrix interpretations:
    
      carrier: N^2
      order: standard order
      interpretations:
        times#_A(x1,x2) = ((1,0),(1,0)) x2
        plus_A(x1,x2) = x1 + ((0,1),(0,0)) x2 + (0,1)
        |1|_A() = (1,1)
        times_A(x1,x2) = (1,2)
        |0|_A() = (2,3)
    
    3. matrix interpretations:
    
      carrier: N^2
      order: standard order
      interpretations:
        times#_A(x1,x2) = (0,0)
        plus_A(x1,x2) = x1 + (1,1)
        |1|_A() = (1,1)
        times_A(x1,x2) = (2,1)
        |0|_A() = (1,2)
    

The next rules are strictly ordered:

  p1

We remove them from the problem.  Then no dependency pair remains.