YES We show the termination of the TRS R: a(a(f(x,y))) -> f(a(b(a(b(a(x))))),a(b(a(b(a(y)))))) f(a(x),a(y)) -> a(f(x,y)) f(b(x),b(y)) -> b(f(x,y)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a#(a(f(x,y))) -> f#(a(b(a(b(a(x))))),a(b(a(b(a(y)))))) p2: a#(a(f(x,y))) -> a#(b(a(b(a(x))))) p3: a#(a(f(x,y))) -> a#(b(a(x))) p4: a#(a(f(x,y))) -> a#(x) p5: a#(a(f(x,y))) -> a#(b(a(b(a(y))))) p6: a#(a(f(x,y))) -> a#(b(a(y))) p7: a#(a(f(x,y))) -> a#(y) p8: f#(a(x),a(y)) -> a#(f(x,y)) p9: f#(a(x),a(y)) -> f#(x,y) p10: f#(b(x),b(y)) -> f#(x,y) and R consists of: r1: a(a(f(x,y))) -> f(a(b(a(b(a(x))))),a(b(a(b(a(y)))))) r2: f(a(x),a(y)) -> a(f(x,y)) r3: f(b(x),b(y)) -> b(f(x,y)) The estimated dependency graph contains the following SCCs: {p1, p4, p7, p8, p9, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a#(a(f(x,y))) -> f#(a(b(a(b(a(x))))),a(b(a(b(a(y)))))) p2: f#(a(x),a(y)) -> f#(x,y) p3: f#(b(x),b(y)) -> f#(x,y) p4: f#(a(x),a(y)) -> a#(f(x,y)) p5: a#(a(f(x,y))) -> a#(y) p6: a#(a(f(x,y))) -> a#(x) and R consists of: r1: a(a(f(x,y))) -> f(a(b(a(b(a(x))))),a(b(a(b(a(y)))))) r2: f(a(x),a(y)) -> a(f(x,y)) r3: f(b(x),b(y)) -> b(f(x,y)) The set of usable rules consists of r1, r2, r3 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: a#_A(x1) = ((1,1),(0,0)) x1 a_A(x1) = ((1,0),(1,1)) x1 + (8,1) f_A(x1,x2) = x1 + x2 + (1,1) f#_A(x1,x2) = ((0,1),(0,0)) x1 + ((0,1),(0,0)) x2 + (1,0) b_A(x1) = x1 + (0,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: a#_A(x1) = (1,1) a_A(x1) = (2,4) f_A(x1,x2) = ((0,0),(1,0)) x1 + (1,1) f#_A(x1,x2) = (0,0) b_A(x1) = (2,4) The next rules are strictly ordered: p1, p2, p3, p4, p5, p6 We remove them from the problem. Then no dependency pair remains.