YES We show the termination of the TRS R: f(f(a(),x),a()) -> f(f(x,f(a(),a())),a()) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(f(a(),x),a()) -> f#(f(x,f(a(),a())),a()) p2: f#(f(a(),x),a()) -> f#(x,f(a(),a())) p3: f#(f(a(),x),a()) -> f#(a(),a()) and R consists of: r1: f(f(a(),x),a()) -> f(f(x,f(a(),a())),a()) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(f(a(),x),a()) -> f#(f(x,f(a(),a())),a()) and R consists of: r1: f(f(a(),x),a()) -> f(f(x,f(a(),a())),a()) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2) = x1 + x2 f_A(x1,x2) = ((0,1),(1,0)) x1 + ((0,1),(0,0)) x2 + (0,1) a_A() = (1,3) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2) = ((0,1),(0,0)) x1 + x2 f_A(x1,x2) = (0,1) a_A() = (1,0) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.