YES We show the termination of the TRS R: active(f(a(),X,X)) -> mark(f(X,b(),b())) active(b()) -> mark(a()) active(f(X1,X2,X3)) -> f(X1,active(X2),X3) f(X1,mark(X2),X3) -> mark(f(X1,X2,X3)) proper(f(X1,X2,X3)) -> f(proper(X1),proper(X2),proper(X3)) proper(a()) -> ok(a()) proper(b()) -> ok(b()) f(ok(X1),ok(X2),ok(X3)) -> ok(f(X1,X2,X3)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(a(),X,X)) -> f#(X,b(),b()) p2: active#(f(X1,X2,X3)) -> f#(X1,active(X2),X3) p3: active#(f(X1,X2,X3)) -> active#(X2) p4: f#(X1,mark(X2),X3) -> f#(X1,X2,X3) p5: proper#(f(X1,X2,X3)) -> f#(proper(X1),proper(X2),proper(X3)) p6: proper#(f(X1,X2,X3)) -> proper#(X1) p7: proper#(f(X1,X2,X3)) -> proper#(X2) p8: proper#(f(X1,X2,X3)) -> proper#(X3) p9: f#(ok(X1),ok(X2),ok(X3)) -> f#(X1,X2,X3) p10: top#(mark(X)) -> top#(proper(X)) p11: top#(mark(X)) -> proper#(X) p12: top#(ok(X)) -> top#(active(X)) p13: top#(ok(X)) -> active#(X) and R consists of: r1: active(f(a(),X,X)) -> mark(f(X,b(),b())) r2: active(b()) -> mark(a()) r3: active(f(X1,X2,X3)) -> f(X1,active(X2),X3) r4: f(X1,mark(X2),X3) -> mark(f(X1,X2,X3)) r5: proper(f(X1,X2,X3)) -> f(proper(X1),proper(X2),proper(X3)) r6: proper(a()) -> ok(a()) r7: proper(b()) -> ok(b()) r8: f(ok(X1),ok(X2),ok(X3)) -> ok(f(X1,X2,X3)) r9: top(mark(X)) -> top(proper(X)) r10: top(ok(X)) -> top(active(X)) The estimated dependency graph contains the following SCCs: {p10, p12} {p3} {p6, p7, p8} {p4, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: top#(ok(X)) -> top#(active(X)) p2: top#(mark(X)) -> top#(proper(X)) and R consists of: r1: active(f(a(),X,X)) -> mark(f(X,b(),b())) r2: active(b()) -> mark(a()) r3: active(f(X1,X2,X3)) -> f(X1,active(X2),X3) r4: f(X1,mark(X2),X3) -> mark(f(X1,X2,X3)) r5: proper(f(X1,X2,X3)) -> f(proper(X1),proper(X2),proper(X3)) r6: proper(a()) -> ok(a()) r7: proper(b()) -> ok(b()) r8: f(ok(X1),ok(X2),ok(X3)) -> ok(f(X1,X2,X3)) r9: top(mark(X)) -> top(proper(X)) r10: top(ok(X)) -> top(active(X)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: top#_A(x1) = ((0,1),(0,0)) x1 ok_A(x1) = x1 active_A(x1) = x1 + (2,0) mark_A(x1) = x1 + (1,2) proper_A(x1) = x1 f_A(x1,x2,x3) = ((0,0),(1,0)) x1 + ((0,1),(0,1)) x2 + ((0,0),(1,0)) x3 + (0,1) a_A() = (6,1) b_A() = (1,3) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: top#_A(x1) = (0,0) ok_A(x1) = ((0,1),(0,1)) x1 active_A(x1) = x1 + (0,1) mark_A(x1) = (0,3) proper_A(x1) = ((1,1),(0,1)) x1 + (1,1) f_A(x1,x2,x3) = (3,2) a_A() = (1,1) b_A() = (1,1) The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: top#(ok(X)) -> top#(active(X)) and R consists of: r1: active(f(a(),X,X)) -> mark(f(X,b(),b())) r2: active(b()) -> mark(a()) r3: active(f(X1,X2,X3)) -> f(X1,active(X2),X3) r4: f(X1,mark(X2),X3) -> mark(f(X1,X2,X3)) r5: proper(f(X1,X2,X3)) -> f(proper(X1),proper(X2),proper(X3)) r6: proper(a()) -> ok(a()) r7: proper(b()) -> ok(b()) r8: f(ok(X1),ok(X2),ok(X3)) -> ok(f(X1,X2,X3)) r9: top(mark(X)) -> top(proper(X)) r10: top(ok(X)) -> top(active(X)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: top#(ok(X)) -> top#(active(X)) and R consists of: r1: active(f(a(),X,X)) -> mark(f(X,b(),b())) r2: active(b()) -> mark(a()) r3: active(f(X1,X2,X3)) -> f(X1,active(X2),X3) r4: f(X1,mark(X2),X3) -> mark(f(X1,X2,X3)) r5: proper(f(X1,X2,X3)) -> f(proper(X1),proper(X2),proper(X3)) r6: proper(a()) -> ok(a()) r7: proper(b()) -> ok(b()) r8: f(ok(X1),ok(X2),ok(X3)) -> ok(f(X1,X2,X3)) r9: top(mark(X)) -> top(proper(X)) r10: top(ok(X)) -> top(active(X)) The set of usable rules consists of r1, r2, r3, r4, r8 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: top#_A(x1) = ((1,1),(1,1)) x1 ok_A(x1) = ((1,1),(1,1)) x1 + (2,1) active_A(x1) = ((1,1),(1,1)) x1 + (1,1) f_A(x1,x2,x3) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (1,2) mark_A(x1) = (1,1) a_A() = (1,1) b_A() = (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: top#_A(x1) = x1 ok_A(x1) = x1 + (3,1) active_A(x1) = x1 + (1,2) f_A(x1,x2,x3) = ((0,0),(1,1)) x1 + ((0,1),(1,1)) x2 + (1,1) mark_A(x1) = (0,6) a_A() = (1,1) b_A() = (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(X1,X2,X3)) -> active#(X2) and R consists of: r1: active(f(a(),X,X)) -> mark(f(X,b(),b())) r2: active(b()) -> mark(a()) r3: active(f(X1,X2,X3)) -> f(X1,active(X2),X3) r4: f(X1,mark(X2),X3) -> mark(f(X1,X2,X3)) r5: proper(f(X1,X2,X3)) -> f(proper(X1),proper(X2),proper(X3)) r6: proper(a()) -> ok(a()) r7: proper(b()) -> ok(b()) r8: f(ok(X1),ok(X2),ok(X3)) -> ok(f(X1,X2,X3)) r9: top(mark(X)) -> top(proper(X)) r10: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: active#_A(x1) = x1 f_A(x1,x2,x3) = ((0,1),(1,1)) x1 + ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: active#_A(x1) = x1 f_A(x1,x2,x3) = ((1,1),(0,0)) x2 + ((0,1),(0,0)) x3 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: proper#(f(X1,X2,X3)) -> proper#(X3) p2: proper#(f(X1,X2,X3)) -> proper#(X2) p3: proper#(f(X1,X2,X3)) -> proper#(X1) and R consists of: r1: active(f(a(),X,X)) -> mark(f(X,b(),b())) r2: active(b()) -> mark(a()) r3: active(f(X1,X2,X3)) -> f(X1,active(X2),X3) r4: f(X1,mark(X2),X3) -> mark(f(X1,X2,X3)) r5: proper(f(X1,X2,X3)) -> f(proper(X1),proper(X2),proper(X3)) r6: proper(a()) -> ok(a()) r7: proper(b()) -> ok(b()) r8: f(ok(X1),ok(X2),ok(X3)) -> ok(f(X1,X2,X3)) r9: top(mark(X)) -> top(proper(X)) r10: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: proper#_A(x1) = ((1,1),(1,1)) x1 f_A(x1,x2,x3) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: proper#_A(x1) = ((1,1),(1,0)) x1 f_A(x1,x2,x3) = ((0,1),(1,1)) x1 + ((1,1),(1,0)) x2 + ((1,1),(1,1)) x3 + (1,1) The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(X1,mark(X2),X3) -> f#(X1,X2,X3) p2: f#(ok(X1),ok(X2),ok(X3)) -> f#(X1,X2,X3) and R consists of: r1: active(f(a(),X,X)) -> mark(f(X,b(),b())) r2: active(b()) -> mark(a()) r3: active(f(X1,X2,X3)) -> f(X1,active(X2),X3) r4: f(X1,mark(X2),X3) -> mark(f(X1,X2,X3)) r5: proper(f(X1,X2,X3)) -> f(proper(X1),proper(X2),proper(X3)) r6: proper(a()) -> ok(a()) r7: proper(b()) -> ok(b()) r8: f(ok(X1),ok(X2),ok(X3)) -> ok(f(X1,X2,X3)) r9: top(mark(X)) -> top(proper(X)) r10: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2,x3) = ((1,1),(1,1)) x1 + ((1,1),(1,0)) x2 + ((1,1),(0,0)) x3 mark_A(x1) = ((1,1),(1,1)) x1 + (1,1) ok_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2,x3) = ((0,1),(1,0)) x1 + ((0,1),(1,1)) x2 + ((0,0),(1,1)) x3 mark_A(x1) = (1,1) ok_A(x1) = ((1,1),(1,0)) x1 + (1,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.