YES We show the termination of the TRS R: active(c()) -> mark(f(g(c()))) active(f(g(X))) -> mark(g(X)) mark(c()) -> active(c()) mark(f(X)) -> active(f(X)) mark(g(X)) -> active(g(X)) f(mark(X)) -> f(X) f(active(X)) -> f(X) g(mark(X)) -> g(X) g(active(X)) -> g(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(c()) -> mark#(f(g(c()))) p2: active#(c()) -> f#(g(c())) p3: active#(c()) -> g#(c()) p4: active#(f(g(X))) -> mark#(g(X)) p5: mark#(c()) -> active#(c()) p6: mark#(f(X)) -> active#(f(X)) p7: mark#(g(X)) -> active#(g(X)) p8: f#(mark(X)) -> f#(X) p9: f#(active(X)) -> f#(X) p10: g#(mark(X)) -> g#(X) p11: g#(active(X)) -> g#(X) and R consists of: r1: active(c()) -> mark(f(g(c()))) r2: active(f(g(X))) -> mark(g(X)) r3: mark(c()) -> active(c()) r4: mark(f(X)) -> active(f(X)) r5: mark(g(X)) -> active(g(X)) r6: f(mark(X)) -> f(X) r7: f(active(X)) -> f(X) r8: g(mark(X)) -> g(X) r9: g(active(X)) -> g(X) The estimated dependency graph contains the following SCCs: {p1, p4, p5, p6, p7} {p8, p9} {p10, p11} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(c()) -> mark#(f(g(c()))) p2: mark#(f(X)) -> active#(f(X)) p3: active#(f(g(X))) -> mark#(g(X)) p4: mark#(g(X)) -> active#(g(X)) p5: mark#(c()) -> active#(c()) and R consists of: r1: active(c()) -> mark(f(g(c()))) r2: active(f(g(X))) -> mark(g(X)) r3: mark(c()) -> active(c()) r4: mark(f(X)) -> active(f(X)) r5: mark(g(X)) -> active(g(X)) r6: f(mark(X)) -> f(X) r7: f(active(X)) -> f(X) r8: g(mark(X)) -> g(X) r9: g(active(X)) -> g(X) The set of usable rules consists of r6, r7, r8, r9 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: active#_A(x1) = ((0,1),(1,1)) x1 c_A() = (5,7) mark#_A(x1) = ((1,0),(1,1)) x1 + (3,4) f_A(x1) = ((0,1),(0,1)) x1 + (0,2) g_A(x1) = (1,3) mark_A(x1) = ((1,1),(1,1)) x1 + (1,1) active_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: active#_A(x1) = (1,1) c_A() = (1,1) mark#_A(x1) = (0,0) f_A(x1) = (1,0) g_A(x1) = (0,1) mark_A(x1) = ((1,1),(1,1)) x1 active_A(x1) = ((1,1),(1,1)) x1 The next rules are strictly ordered: p1, p2, p3, p4, p5 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(mark(X)) -> f#(X) p2: f#(active(X)) -> f#(X) and R consists of: r1: active(c()) -> mark(f(g(c()))) r2: active(f(g(X))) -> mark(g(X)) r3: mark(c()) -> active(c()) r4: mark(f(X)) -> active(f(X)) r5: mark(g(X)) -> active(g(X)) r6: f(mark(X)) -> f(X) r7: f(active(X)) -> f(X) r8: g(mark(X)) -> g(X) r9: g(active(X)) -> g(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1) = ((1,1),(1,1)) x1 mark_A(x1) = ((1,1),(1,1)) x1 + (1,1) active_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1) = ((1,1),(0,1)) x1 mark_A(x1) = x1 + (1,1) active_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g#(mark(X)) -> g#(X) p2: g#(active(X)) -> g#(X) and R consists of: r1: active(c()) -> mark(f(g(c()))) r2: active(f(g(X))) -> mark(g(X)) r3: mark(c()) -> active(c()) r4: mark(f(X)) -> active(f(X)) r5: mark(g(X)) -> active(g(X)) r6: f(mark(X)) -> f(X) r7: f(active(X)) -> f(X) r8: g(mark(X)) -> g(X) r9: g(active(X)) -> g(X) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: g#_A(x1) = ((0,1),(1,0)) x1 mark_A(x1) = ((1,1),(1,1)) x1 + (1,1) active_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: g#_A(x1) = (0,0) mark_A(x1) = (1,1) active_A(x1) = (1,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.