YES We show the termination of the TRS R: active(pairNs()) -> mark(cons(|0|(),incr(oddNs()))) active(oddNs()) -> mark(incr(pairNs())) active(incr(cons(X,XS))) -> mark(cons(s(X),incr(XS))) active(take(|0|(),XS)) -> mark(nil()) active(take(s(N),cons(X,XS))) -> mark(cons(X,take(N,XS))) active(zip(nil(),XS)) -> mark(nil()) active(zip(X,nil())) -> mark(nil()) active(zip(cons(X,XS),cons(Y,YS))) -> mark(cons(pair(X,Y),zip(XS,YS))) active(tail(cons(X,XS))) -> mark(XS) active(repItems(nil())) -> mark(nil()) active(repItems(cons(X,XS))) -> mark(cons(X,cons(X,repItems(XS)))) active(cons(X1,X2)) -> cons(active(X1),X2) active(incr(X)) -> incr(active(X)) active(s(X)) -> s(active(X)) active(take(X1,X2)) -> take(active(X1),X2) active(take(X1,X2)) -> take(X1,active(X2)) active(zip(X1,X2)) -> zip(active(X1),X2) active(zip(X1,X2)) -> zip(X1,active(X2)) active(pair(X1,X2)) -> pair(active(X1),X2) active(pair(X1,X2)) -> pair(X1,active(X2)) active(tail(X)) -> tail(active(X)) active(repItems(X)) -> repItems(active(X)) cons(mark(X1),X2) -> mark(cons(X1,X2)) incr(mark(X)) -> mark(incr(X)) s(mark(X)) -> mark(s(X)) take(mark(X1),X2) -> mark(take(X1,X2)) take(X1,mark(X2)) -> mark(take(X1,X2)) zip(mark(X1),X2) -> mark(zip(X1,X2)) zip(X1,mark(X2)) -> mark(zip(X1,X2)) pair(mark(X1),X2) -> mark(pair(X1,X2)) pair(X1,mark(X2)) -> mark(pair(X1,X2)) tail(mark(X)) -> mark(tail(X)) repItems(mark(X)) -> mark(repItems(X)) proper(pairNs()) -> ok(pairNs()) proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) proper(|0|()) -> ok(|0|()) proper(incr(X)) -> incr(proper(X)) proper(oddNs()) -> ok(oddNs()) proper(s(X)) -> s(proper(X)) proper(take(X1,X2)) -> take(proper(X1),proper(X2)) proper(nil()) -> ok(nil()) proper(zip(X1,X2)) -> zip(proper(X1),proper(X2)) proper(pair(X1,X2)) -> pair(proper(X1),proper(X2)) proper(tail(X)) -> tail(proper(X)) proper(repItems(X)) -> repItems(proper(X)) cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) incr(ok(X)) -> ok(incr(X)) s(ok(X)) -> ok(s(X)) take(ok(X1),ok(X2)) -> ok(take(X1,X2)) zip(ok(X1),ok(X2)) -> ok(zip(X1,X2)) pair(ok(X1),ok(X2)) -> ok(pair(X1,X2)) tail(ok(X)) -> ok(tail(X)) repItems(ok(X)) -> ok(repItems(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(pairNs()) -> cons#(|0|(),incr(oddNs())) p2: active#(pairNs()) -> incr#(oddNs()) p3: active#(oddNs()) -> incr#(pairNs()) p4: active#(incr(cons(X,XS))) -> cons#(s(X),incr(XS)) p5: active#(incr(cons(X,XS))) -> s#(X) p6: active#(incr(cons(X,XS))) -> incr#(XS) p7: active#(take(s(N),cons(X,XS))) -> cons#(X,take(N,XS)) p8: active#(take(s(N),cons(X,XS))) -> take#(N,XS) p9: active#(zip(cons(X,XS),cons(Y,YS))) -> cons#(pair(X,Y),zip(XS,YS)) p10: active#(zip(cons(X,XS),cons(Y,YS))) -> pair#(X,Y) p11: active#(zip(cons(X,XS),cons(Y,YS))) -> zip#(XS,YS) p12: active#(repItems(cons(X,XS))) -> cons#(X,cons(X,repItems(XS))) p13: active#(repItems(cons(X,XS))) -> cons#(X,repItems(XS)) p14: active#(repItems(cons(X,XS))) -> repItems#(XS) p15: active#(cons(X1,X2)) -> cons#(active(X1),X2) p16: active#(cons(X1,X2)) -> active#(X1) p17: active#(incr(X)) -> incr#(active(X)) p18: active#(incr(X)) -> active#(X) p19: active#(s(X)) -> s#(active(X)) p20: active#(s(X)) -> active#(X) p21: active#(take(X1,X2)) -> take#(active(X1),X2) p22: active#(take(X1,X2)) -> active#(X1) p23: active#(take(X1,X2)) -> take#(X1,active(X2)) p24: active#(take(X1,X2)) -> active#(X2) p25: active#(zip(X1,X2)) -> zip#(active(X1),X2) p26: active#(zip(X1,X2)) -> active#(X1) p27: active#(zip(X1,X2)) -> zip#(X1,active(X2)) p28: active#(zip(X1,X2)) -> active#(X2) p29: active#(pair(X1,X2)) -> pair#(active(X1),X2) p30: active#(pair(X1,X2)) -> active#(X1) p31: active#(pair(X1,X2)) -> pair#(X1,active(X2)) p32: active#(pair(X1,X2)) -> active#(X2) p33: active#(tail(X)) -> tail#(active(X)) p34: active#(tail(X)) -> active#(X) p35: active#(repItems(X)) -> repItems#(active(X)) p36: active#(repItems(X)) -> active#(X) p37: cons#(mark(X1),X2) -> cons#(X1,X2) p38: incr#(mark(X)) -> incr#(X) p39: s#(mark(X)) -> s#(X) p40: take#(mark(X1),X2) -> take#(X1,X2) p41: take#(X1,mark(X2)) -> take#(X1,X2) p42: zip#(mark(X1),X2) -> zip#(X1,X2) p43: zip#(X1,mark(X2)) -> zip#(X1,X2) p44: pair#(mark(X1),X2) -> pair#(X1,X2) p45: pair#(X1,mark(X2)) -> pair#(X1,X2) p46: tail#(mark(X)) -> tail#(X) p47: repItems#(mark(X)) -> repItems#(X) p48: proper#(cons(X1,X2)) -> cons#(proper(X1),proper(X2)) p49: proper#(cons(X1,X2)) -> proper#(X1) p50: proper#(cons(X1,X2)) -> proper#(X2) p51: proper#(incr(X)) -> incr#(proper(X)) p52: proper#(incr(X)) -> proper#(X) p53: proper#(s(X)) -> s#(proper(X)) p54: proper#(s(X)) -> proper#(X) p55: proper#(take(X1,X2)) -> take#(proper(X1),proper(X2)) p56: proper#(take(X1,X2)) -> proper#(X1) p57: proper#(take(X1,X2)) -> proper#(X2) p58: proper#(zip(X1,X2)) -> zip#(proper(X1),proper(X2)) p59: proper#(zip(X1,X2)) -> proper#(X1) p60: proper#(zip(X1,X2)) -> proper#(X2) p61: proper#(pair(X1,X2)) -> pair#(proper(X1),proper(X2)) p62: proper#(pair(X1,X2)) -> proper#(X1) p63: proper#(pair(X1,X2)) -> proper#(X2) p64: proper#(tail(X)) -> tail#(proper(X)) p65: proper#(tail(X)) -> proper#(X) p66: proper#(repItems(X)) -> repItems#(proper(X)) p67: proper#(repItems(X)) -> proper#(X) p68: cons#(ok(X1),ok(X2)) -> cons#(X1,X2) p69: incr#(ok(X)) -> incr#(X) p70: s#(ok(X)) -> s#(X) p71: take#(ok(X1),ok(X2)) -> take#(X1,X2) p72: zip#(ok(X1),ok(X2)) -> zip#(X1,X2) p73: pair#(ok(X1),ok(X2)) -> pair#(X1,X2) p74: tail#(ok(X)) -> tail#(X) p75: repItems#(ok(X)) -> repItems#(X) p76: top#(mark(X)) -> top#(proper(X)) p77: top#(mark(X)) -> proper#(X) p78: top#(ok(X)) -> top#(active(X)) p79: top#(ok(X)) -> active#(X) and R consists of: r1: active(pairNs()) -> mark(cons(|0|(),incr(oddNs()))) r2: active(oddNs()) -> mark(incr(pairNs())) r3: active(incr(cons(X,XS))) -> mark(cons(s(X),incr(XS))) r4: active(take(|0|(),XS)) -> mark(nil()) r5: active(take(s(N),cons(X,XS))) -> mark(cons(X,take(N,XS))) r6: active(zip(nil(),XS)) -> mark(nil()) r7: active(zip(X,nil())) -> mark(nil()) r8: active(zip(cons(X,XS),cons(Y,YS))) -> mark(cons(pair(X,Y),zip(XS,YS))) r9: active(tail(cons(X,XS))) -> mark(XS) r10: active(repItems(nil())) -> mark(nil()) r11: active(repItems(cons(X,XS))) -> mark(cons(X,cons(X,repItems(XS)))) r12: active(cons(X1,X2)) -> cons(active(X1),X2) r13: active(incr(X)) -> incr(active(X)) r14: active(s(X)) -> s(active(X)) r15: active(take(X1,X2)) -> take(active(X1),X2) r16: active(take(X1,X2)) -> take(X1,active(X2)) r17: active(zip(X1,X2)) -> zip(active(X1),X2) r18: active(zip(X1,X2)) -> zip(X1,active(X2)) r19: active(pair(X1,X2)) -> pair(active(X1),X2) r20: active(pair(X1,X2)) -> pair(X1,active(X2)) r21: active(tail(X)) -> tail(active(X)) r22: active(repItems(X)) -> repItems(active(X)) r23: cons(mark(X1),X2) -> mark(cons(X1,X2)) r24: incr(mark(X)) -> mark(incr(X)) r25: s(mark(X)) -> mark(s(X)) r26: take(mark(X1),X2) -> mark(take(X1,X2)) r27: take(X1,mark(X2)) -> mark(take(X1,X2)) r28: zip(mark(X1),X2) -> mark(zip(X1,X2)) r29: zip(X1,mark(X2)) -> mark(zip(X1,X2)) r30: pair(mark(X1),X2) -> mark(pair(X1,X2)) r31: pair(X1,mark(X2)) -> mark(pair(X1,X2)) r32: tail(mark(X)) -> mark(tail(X)) r33: repItems(mark(X)) -> mark(repItems(X)) r34: proper(pairNs()) -> ok(pairNs()) r35: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r36: proper(|0|()) -> ok(|0|()) r37: proper(incr(X)) -> incr(proper(X)) r38: proper(oddNs()) -> ok(oddNs()) r39: proper(s(X)) -> s(proper(X)) r40: proper(take(X1,X2)) -> take(proper(X1),proper(X2)) r41: proper(nil()) -> ok(nil()) r42: proper(zip(X1,X2)) -> zip(proper(X1),proper(X2)) r43: proper(pair(X1,X2)) -> pair(proper(X1),proper(X2)) r44: proper(tail(X)) -> tail(proper(X)) r45: proper(repItems(X)) -> repItems(proper(X)) r46: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r47: incr(ok(X)) -> ok(incr(X)) r48: s(ok(X)) -> ok(s(X)) r49: take(ok(X1),ok(X2)) -> ok(take(X1,X2)) r50: zip(ok(X1),ok(X2)) -> ok(zip(X1,X2)) r51: pair(ok(X1),ok(X2)) -> ok(pair(X1,X2)) r52: tail(ok(X)) -> ok(tail(X)) r53: repItems(ok(X)) -> ok(repItems(X)) r54: top(mark(X)) -> top(proper(X)) r55: top(ok(X)) -> top(active(X)) The estimated dependency graph contains the following SCCs: {p76, p78} {p16, p18, p20, p22, p24, p26, p28, p30, p32, p34, p36} {p49, p50, p52, p54, p56, p57, p59, p60, p62, p63, p65, p67} {p37, p68} {p39, p70} {p38, p69} {p40, p41, p71} {p44, p45, p73} {p42, p43, p72} {p47, p75} {p46, p74} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: top#(ok(X)) -> top#(active(X)) p2: top#(mark(X)) -> top#(proper(X)) and R consists of: r1: active(pairNs()) -> mark(cons(|0|(),incr(oddNs()))) r2: active(oddNs()) -> mark(incr(pairNs())) r3: active(incr(cons(X,XS))) -> mark(cons(s(X),incr(XS))) r4: active(take(|0|(),XS)) -> mark(nil()) r5: active(take(s(N),cons(X,XS))) -> mark(cons(X,take(N,XS))) r6: active(zip(nil(),XS)) -> mark(nil()) r7: active(zip(X,nil())) -> mark(nil()) r8: active(zip(cons(X,XS),cons(Y,YS))) -> mark(cons(pair(X,Y),zip(XS,YS))) r9: active(tail(cons(X,XS))) -> mark(XS) r10: active(repItems(nil())) -> mark(nil()) r11: active(repItems(cons(X,XS))) -> mark(cons(X,cons(X,repItems(XS)))) r12: active(cons(X1,X2)) -> cons(active(X1),X2) r13: active(incr(X)) -> incr(active(X)) r14: active(s(X)) -> s(active(X)) r15: active(take(X1,X2)) -> take(active(X1),X2) r16: active(take(X1,X2)) -> take(X1,active(X2)) r17: active(zip(X1,X2)) -> zip(active(X1),X2) r18: active(zip(X1,X2)) -> zip(X1,active(X2)) r19: active(pair(X1,X2)) -> pair(active(X1),X2) r20: active(pair(X1,X2)) -> pair(X1,active(X2)) r21: active(tail(X)) -> tail(active(X)) r22: active(repItems(X)) -> repItems(active(X)) r23: cons(mark(X1),X2) -> mark(cons(X1,X2)) r24: incr(mark(X)) -> mark(incr(X)) r25: s(mark(X)) -> mark(s(X)) r26: take(mark(X1),X2) -> mark(take(X1,X2)) r27: take(X1,mark(X2)) -> mark(take(X1,X2)) r28: zip(mark(X1),X2) -> mark(zip(X1,X2)) r29: zip(X1,mark(X2)) -> mark(zip(X1,X2)) r30: pair(mark(X1),X2) -> mark(pair(X1,X2)) r31: pair(X1,mark(X2)) -> mark(pair(X1,X2)) r32: tail(mark(X)) -> mark(tail(X)) r33: repItems(mark(X)) -> mark(repItems(X)) r34: proper(pairNs()) -> ok(pairNs()) r35: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r36: proper(|0|()) -> ok(|0|()) r37: proper(incr(X)) -> incr(proper(X)) r38: proper(oddNs()) -> ok(oddNs()) r39: proper(s(X)) -> s(proper(X)) r40: proper(take(X1,X2)) -> take(proper(X1),proper(X2)) r41: proper(nil()) -> ok(nil()) r42: proper(zip(X1,X2)) -> zip(proper(X1),proper(X2)) r43: proper(pair(X1,X2)) -> pair(proper(X1),proper(X2)) r44: proper(tail(X)) -> tail(proper(X)) r45: proper(repItems(X)) -> repItems(proper(X)) r46: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r47: incr(ok(X)) -> ok(incr(X)) r48: s(ok(X)) -> ok(s(X)) r49: take(ok(X1),ok(X2)) -> ok(take(X1,X2)) r50: zip(ok(X1),ok(X2)) -> ok(zip(X1,X2)) r51: pair(ok(X1),ok(X2)) -> ok(pair(X1,X2)) r52: tail(ok(X)) -> ok(tail(X)) r53: repItems(ok(X)) -> ok(repItems(X)) r54: top(mark(X)) -> top(proper(X)) r55: top(ok(X)) -> top(active(X)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: top#_A(x1) = ((1,0),(1,0)) x1 ok_A(x1) = x1 active_A(x1) = x1 mark_A(x1) = x1 proper_A(x1) = x1 cons_A(x1,x2) = ((1,0),(1,0)) x1 + x2 incr_A(x1) = ((1,0),(1,0)) x1 + (0,1) s_A(x1) = x1 + (0,1) take_A(x1,x2) = x1 + ((1,0),(1,0)) x2 + (2,1) zip_A(x1,x2) = x1 + x2 + (1,1) pair_A(x1,x2) = ((1,0),(1,0)) x1 + x2 + (0,1) tail_A(x1) = x1 + (1,1) repItems_A(x1) = ((1,1),(1,1)) x1 + (1,1) pairNs_A() = (1,2) |0|_A() = (0,1) oddNs_A() = (1,2) nil_A() = (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: top#_A(x1) = ((0,1),(0,0)) x1 ok_A(x1) = x1 active_A(x1) = x1 mark_A(x1) = ((0,0),(1,1)) x1 + (0,3) proper_A(x1) = ((0,1),(0,1)) x1 + (1,0) cons_A(x1,x2) = x1 + (0,1) incr_A(x1) = x1 + (0,3) s_A(x1) = x1 take_A(x1,x2) = x1 + x2 + (0,3) zip_A(x1,x2) = x1 + x2 + (0,3) pair_A(x1,x2) = x1 + x2 + (0,1) tail_A(x1) = x1 + (0,1) repItems_A(x1) = x1 + (0,3) pairNs_A() = (1,5) |0|_A() = (0,1) oddNs_A() = (1,12) nil_A() = (1,1) The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: top#(ok(X)) -> top#(active(X)) and R consists of: r1: active(pairNs()) -> mark(cons(|0|(),incr(oddNs()))) r2: active(oddNs()) -> mark(incr(pairNs())) r3: active(incr(cons(X,XS))) -> mark(cons(s(X),incr(XS))) r4: active(take(|0|(),XS)) -> mark(nil()) r5: active(take(s(N),cons(X,XS))) -> mark(cons(X,take(N,XS))) r6: active(zip(nil(),XS)) -> mark(nil()) r7: active(zip(X,nil())) -> mark(nil()) r8: active(zip(cons(X,XS),cons(Y,YS))) -> mark(cons(pair(X,Y),zip(XS,YS))) r9: active(tail(cons(X,XS))) -> mark(XS) r10: active(repItems(nil())) -> mark(nil()) r11: active(repItems(cons(X,XS))) -> mark(cons(X,cons(X,repItems(XS)))) r12: active(cons(X1,X2)) -> cons(active(X1),X2) r13: active(incr(X)) -> incr(active(X)) r14: active(s(X)) -> s(active(X)) r15: active(take(X1,X2)) -> take(active(X1),X2) r16: active(take(X1,X2)) -> take(X1,active(X2)) r17: active(zip(X1,X2)) -> zip(active(X1),X2) r18: active(zip(X1,X2)) -> zip(X1,active(X2)) r19: active(pair(X1,X2)) -> pair(active(X1),X2) r20: active(pair(X1,X2)) -> pair(X1,active(X2)) r21: active(tail(X)) -> tail(active(X)) r22: active(repItems(X)) -> repItems(active(X)) r23: cons(mark(X1),X2) -> mark(cons(X1,X2)) r24: incr(mark(X)) -> mark(incr(X)) r25: s(mark(X)) -> mark(s(X)) r26: take(mark(X1),X2) -> mark(take(X1,X2)) r27: take(X1,mark(X2)) -> mark(take(X1,X2)) r28: zip(mark(X1),X2) -> mark(zip(X1,X2)) r29: zip(X1,mark(X2)) -> mark(zip(X1,X2)) r30: pair(mark(X1),X2) -> mark(pair(X1,X2)) r31: pair(X1,mark(X2)) -> mark(pair(X1,X2)) r32: tail(mark(X)) -> mark(tail(X)) r33: repItems(mark(X)) -> mark(repItems(X)) r34: proper(pairNs()) -> ok(pairNs()) r35: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r36: proper(|0|()) -> ok(|0|()) r37: proper(incr(X)) -> incr(proper(X)) r38: proper(oddNs()) -> ok(oddNs()) r39: proper(s(X)) -> s(proper(X)) r40: proper(take(X1,X2)) -> take(proper(X1),proper(X2)) r41: proper(nil()) -> ok(nil()) r42: proper(zip(X1,X2)) -> zip(proper(X1),proper(X2)) r43: proper(pair(X1,X2)) -> pair(proper(X1),proper(X2)) r44: proper(tail(X)) -> tail(proper(X)) r45: proper(repItems(X)) -> repItems(proper(X)) r46: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r47: incr(ok(X)) -> ok(incr(X)) r48: s(ok(X)) -> ok(s(X)) r49: take(ok(X1),ok(X2)) -> ok(take(X1,X2)) r50: zip(ok(X1),ok(X2)) -> ok(zip(X1,X2)) r51: pair(ok(X1),ok(X2)) -> ok(pair(X1,X2)) r52: tail(ok(X)) -> ok(tail(X)) r53: repItems(ok(X)) -> ok(repItems(X)) r54: top(mark(X)) -> top(proper(X)) r55: top(ok(X)) -> top(active(X)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: top#(ok(X)) -> top#(active(X)) and R consists of: r1: active(pairNs()) -> mark(cons(|0|(),incr(oddNs()))) r2: active(oddNs()) -> mark(incr(pairNs())) r3: active(incr(cons(X,XS))) -> mark(cons(s(X),incr(XS))) r4: active(take(|0|(),XS)) -> mark(nil()) r5: active(take(s(N),cons(X,XS))) -> mark(cons(X,take(N,XS))) r6: active(zip(nil(),XS)) -> mark(nil()) r7: active(zip(X,nil())) -> mark(nil()) r8: active(zip(cons(X,XS),cons(Y,YS))) -> mark(cons(pair(X,Y),zip(XS,YS))) r9: active(tail(cons(X,XS))) -> mark(XS) r10: active(repItems(nil())) -> mark(nil()) r11: active(repItems(cons(X,XS))) -> mark(cons(X,cons(X,repItems(XS)))) r12: active(cons(X1,X2)) -> cons(active(X1),X2) r13: active(incr(X)) -> incr(active(X)) r14: active(s(X)) -> s(active(X)) r15: active(take(X1,X2)) -> take(active(X1),X2) r16: active(take(X1,X2)) -> take(X1,active(X2)) r17: active(zip(X1,X2)) -> zip(active(X1),X2) r18: active(zip(X1,X2)) -> zip(X1,active(X2)) r19: active(pair(X1,X2)) -> pair(active(X1),X2) r20: active(pair(X1,X2)) -> pair(X1,active(X2)) r21: active(tail(X)) -> tail(active(X)) r22: active(repItems(X)) -> repItems(active(X)) r23: cons(mark(X1),X2) -> mark(cons(X1,X2)) r24: incr(mark(X)) -> mark(incr(X)) r25: s(mark(X)) -> mark(s(X)) r26: take(mark(X1),X2) -> mark(take(X1,X2)) r27: take(X1,mark(X2)) -> mark(take(X1,X2)) r28: zip(mark(X1),X2) -> mark(zip(X1,X2)) r29: zip(X1,mark(X2)) -> mark(zip(X1,X2)) r30: pair(mark(X1),X2) -> mark(pair(X1,X2)) r31: pair(X1,mark(X2)) -> mark(pair(X1,X2)) r32: tail(mark(X)) -> mark(tail(X)) r33: repItems(mark(X)) -> mark(repItems(X)) r34: proper(pairNs()) -> ok(pairNs()) r35: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r36: proper(|0|()) -> ok(|0|()) r37: proper(incr(X)) -> incr(proper(X)) r38: proper(oddNs()) -> ok(oddNs()) r39: proper(s(X)) -> s(proper(X)) r40: proper(take(X1,X2)) -> take(proper(X1),proper(X2)) r41: proper(nil()) -> ok(nil()) r42: proper(zip(X1,X2)) -> zip(proper(X1),proper(X2)) r43: proper(pair(X1,X2)) -> pair(proper(X1),proper(X2)) r44: proper(tail(X)) -> tail(proper(X)) r45: proper(repItems(X)) -> repItems(proper(X)) r46: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r47: incr(ok(X)) -> ok(incr(X)) r48: s(ok(X)) -> ok(s(X)) r49: take(ok(X1),ok(X2)) -> ok(take(X1,X2)) r50: zip(ok(X1),ok(X2)) -> ok(zip(X1,X2)) r51: pair(ok(X1),ok(X2)) -> ok(pair(X1,X2)) r52: tail(ok(X)) -> ok(tail(X)) r53: repItems(ok(X)) -> ok(repItems(X)) r54: top(mark(X)) -> top(proper(X)) r55: top(ok(X)) -> top(active(X)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r46, r47, r48, r49, r50, r51, r52, r53 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: top#_A(x1) = ((1,1),(0,0)) x1 ok_A(x1) = ((0,1),(1,0)) x1 + (1,2) active_A(x1) = x1 + (1,1) cons_A(x1,x2) = ((1,1),(1,1)) x2 + (0,1) mark_A(x1) = (0,1) incr_A(x1) = x1 + (1,1) s_A(x1) = x1 + (1,1) take_A(x1,x2) = x1 + (1,1) zip_A(x1,x2) = x1 + ((0,1),(1,0)) x2 + (0,1) pair_A(x1,x2) = ((0,1),(1,0)) x2 + (1,2) tail_A(x1) = x1 + (1,1) repItems_A(x1) = ((0,1),(1,0)) x1 + (1,2) pairNs_A() = (1,1) |0|_A() = (1,1) oddNs_A() = (1,1) nil_A() = (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: top#_A(x1) = ((1,0),(1,1)) x1 ok_A(x1) = (3,5) active_A(x1) = (5,7) cons_A(x1,x2) = ((0,0),(1,0)) x2 + (2,1) mark_A(x1) = (1,1) incr_A(x1) = (4,5) s_A(x1) = x1 + (0,5) take_A(x1,x2) = ((0,0),(1,0)) x1 + (4,2) zip_A(x1,x2) = (4,4) pair_A(x1,x2) = (4,7) tail_A(x1) = x1 + (4,0) repItems_A(x1) = (3,7) pairNs_A() = (1,1) |0|_A() = (1,1) oddNs_A() = (1,1) nil_A() = (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(repItems(X)) -> active#(X) p2: active#(tail(X)) -> active#(X) p3: active#(pair(X1,X2)) -> active#(X2) p4: active#(pair(X1,X2)) -> active#(X1) p5: active#(zip(X1,X2)) -> active#(X2) p6: active#(zip(X1,X2)) -> active#(X1) p7: active#(take(X1,X2)) -> active#(X2) p8: active#(take(X1,X2)) -> active#(X1) p9: active#(s(X)) -> active#(X) p10: active#(incr(X)) -> active#(X) p11: active#(cons(X1,X2)) -> active#(X1) and R consists of: r1: active(pairNs()) -> mark(cons(|0|(),incr(oddNs()))) r2: active(oddNs()) -> mark(incr(pairNs())) r3: active(incr(cons(X,XS))) -> mark(cons(s(X),incr(XS))) r4: active(take(|0|(),XS)) -> mark(nil()) r5: active(take(s(N),cons(X,XS))) -> mark(cons(X,take(N,XS))) r6: active(zip(nil(),XS)) -> mark(nil()) r7: active(zip(X,nil())) -> mark(nil()) r8: active(zip(cons(X,XS),cons(Y,YS))) -> mark(cons(pair(X,Y),zip(XS,YS))) r9: active(tail(cons(X,XS))) -> mark(XS) r10: active(repItems(nil())) -> mark(nil()) r11: active(repItems(cons(X,XS))) -> mark(cons(X,cons(X,repItems(XS)))) r12: active(cons(X1,X2)) -> cons(active(X1),X2) r13: active(incr(X)) -> incr(active(X)) r14: active(s(X)) -> s(active(X)) r15: active(take(X1,X2)) -> take(active(X1),X2) r16: active(take(X1,X2)) -> take(X1,active(X2)) r17: active(zip(X1,X2)) -> zip(active(X1),X2) r18: active(zip(X1,X2)) -> zip(X1,active(X2)) r19: active(pair(X1,X2)) -> pair(active(X1),X2) r20: active(pair(X1,X2)) -> pair(X1,active(X2)) r21: active(tail(X)) -> tail(active(X)) r22: active(repItems(X)) -> repItems(active(X)) r23: cons(mark(X1),X2) -> mark(cons(X1,X2)) r24: incr(mark(X)) -> mark(incr(X)) r25: s(mark(X)) -> mark(s(X)) r26: take(mark(X1),X2) -> mark(take(X1,X2)) r27: take(X1,mark(X2)) -> mark(take(X1,X2)) r28: zip(mark(X1),X2) -> mark(zip(X1,X2)) r29: zip(X1,mark(X2)) -> mark(zip(X1,X2)) r30: pair(mark(X1),X2) -> mark(pair(X1,X2)) r31: pair(X1,mark(X2)) -> mark(pair(X1,X2)) r32: tail(mark(X)) -> mark(tail(X)) r33: repItems(mark(X)) -> mark(repItems(X)) r34: proper(pairNs()) -> ok(pairNs()) r35: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r36: proper(|0|()) -> ok(|0|()) r37: proper(incr(X)) -> incr(proper(X)) r38: proper(oddNs()) -> ok(oddNs()) r39: proper(s(X)) -> s(proper(X)) r40: proper(take(X1,X2)) -> take(proper(X1),proper(X2)) r41: proper(nil()) -> ok(nil()) r42: proper(zip(X1,X2)) -> zip(proper(X1),proper(X2)) r43: proper(pair(X1,X2)) -> pair(proper(X1),proper(X2)) r44: proper(tail(X)) -> tail(proper(X)) r45: proper(repItems(X)) -> repItems(proper(X)) r46: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r47: incr(ok(X)) -> ok(incr(X)) r48: s(ok(X)) -> ok(s(X)) r49: take(ok(X1),ok(X2)) -> ok(take(X1,X2)) r50: zip(ok(X1),ok(X2)) -> ok(zip(X1,X2)) r51: pair(ok(X1),ok(X2)) -> ok(pair(X1,X2)) r52: tail(ok(X)) -> ok(tail(X)) r53: repItems(ok(X)) -> ok(repItems(X)) r54: top(mark(X)) -> top(proper(X)) r55: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: active#_A(x1) = ((1,1),(1,1)) x1 repItems_A(x1) = ((1,1),(1,1)) x1 + (1,1) tail_A(x1) = ((1,1),(1,1)) x1 + (1,1) pair_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) zip_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) take_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) s_A(x1) = ((1,1),(1,1)) x1 + (1,1) incr_A(x1) = ((1,1),(1,1)) x1 + (1,1) cons_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: active#_A(x1) = ((1,1),(1,0)) x1 repItems_A(x1) = ((1,1),(1,1)) x1 + (1,1) tail_A(x1) = ((1,1),(1,1)) x1 + (1,1) pair_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) zip_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(0,1)) x2 + (1,1) take_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) s_A(x1) = ((1,1),(1,1)) x1 + (1,1) incr_A(x1) = ((1,1),(1,1)) x1 + (1,1) cons_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: proper#(repItems(X)) -> proper#(X) p2: proper#(tail(X)) -> proper#(X) p3: proper#(pair(X1,X2)) -> proper#(X2) p4: proper#(pair(X1,X2)) -> proper#(X1) p5: proper#(zip(X1,X2)) -> proper#(X2) p6: proper#(zip(X1,X2)) -> proper#(X1) p7: proper#(take(X1,X2)) -> proper#(X2) p8: proper#(take(X1,X2)) -> proper#(X1) p9: proper#(s(X)) -> proper#(X) p10: proper#(incr(X)) -> proper#(X) p11: proper#(cons(X1,X2)) -> proper#(X2) p12: proper#(cons(X1,X2)) -> proper#(X1) and R consists of: r1: active(pairNs()) -> mark(cons(|0|(),incr(oddNs()))) r2: active(oddNs()) -> mark(incr(pairNs())) r3: active(incr(cons(X,XS))) -> mark(cons(s(X),incr(XS))) r4: active(take(|0|(),XS)) -> mark(nil()) r5: active(take(s(N),cons(X,XS))) -> mark(cons(X,take(N,XS))) r6: active(zip(nil(),XS)) -> mark(nil()) r7: active(zip(X,nil())) -> mark(nil()) r8: active(zip(cons(X,XS),cons(Y,YS))) -> mark(cons(pair(X,Y),zip(XS,YS))) r9: active(tail(cons(X,XS))) -> mark(XS) r10: active(repItems(nil())) -> mark(nil()) r11: active(repItems(cons(X,XS))) -> mark(cons(X,cons(X,repItems(XS)))) r12: active(cons(X1,X2)) -> cons(active(X1),X2) r13: active(incr(X)) -> incr(active(X)) r14: active(s(X)) -> s(active(X)) r15: active(take(X1,X2)) -> take(active(X1),X2) r16: active(take(X1,X2)) -> take(X1,active(X2)) r17: active(zip(X1,X2)) -> zip(active(X1),X2) r18: active(zip(X1,X2)) -> zip(X1,active(X2)) r19: active(pair(X1,X2)) -> pair(active(X1),X2) r20: active(pair(X1,X2)) -> pair(X1,active(X2)) r21: active(tail(X)) -> tail(active(X)) r22: active(repItems(X)) -> repItems(active(X)) r23: cons(mark(X1),X2) -> mark(cons(X1,X2)) r24: incr(mark(X)) -> mark(incr(X)) r25: s(mark(X)) -> mark(s(X)) r26: take(mark(X1),X2) -> mark(take(X1,X2)) r27: take(X1,mark(X2)) -> mark(take(X1,X2)) r28: zip(mark(X1),X2) -> mark(zip(X1,X2)) r29: zip(X1,mark(X2)) -> mark(zip(X1,X2)) r30: pair(mark(X1),X2) -> mark(pair(X1,X2)) r31: pair(X1,mark(X2)) -> mark(pair(X1,X2)) r32: tail(mark(X)) -> mark(tail(X)) r33: repItems(mark(X)) -> mark(repItems(X)) r34: proper(pairNs()) -> ok(pairNs()) r35: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r36: proper(|0|()) -> ok(|0|()) r37: proper(incr(X)) -> incr(proper(X)) r38: proper(oddNs()) -> ok(oddNs()) r39: proper(s(X)) -> s(proper(X)) r40: proper(take(X1,X2)) -> take(proper(X1),proper(X2)) r41: proper(nil()) -> ok(nil()) r42: proper(zip(X1,X2)) -> zip(proper(X1),proper(X2)) r43: proper(pair(X1,X2)) -> pair(proper(X1),proper(X2)) r44: proper(tail(X)) -> tail(proper(X)) r45: proper(repItems(X)) -> repItems(proper(X)) r46: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r47: incr(ok(X)) -> ok(incr(X)) r48: s(ok(X)) -> ok(s(X)) r49: take(ok(X1),ok(X2)) -> ok(take(X1,X2)) r50: zip(ok(X1),ok(X2)) -> ok(zip(X1,X2)) r51: pair(ok(X1),ok(X2)) -> ok(pair(X1,X2)) r52: tail(ok(X)) -> ok(tail(X)) r53: repItems(ok(X)) -> ok(repItems(X)) r54: top(mark(X)) -> top(proper(X)) r55: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: proper#_A(x1) = ((1,1),(0,0)) x1 repItems_A(x1) = ((1,1),(1,1)) x1 + (1,1) tail_A(x1) = ((1,1),(1,1)) x1 + (1,1) pair_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) zip_A(x1,x2) = ((0,1),(1,0)) x1 + ((1,1),(1,1)) x2 + (1,1) take_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) s_A(x1) = ((1,1),(1,1)) x1 + (1,1) incr_A(x1) = ((1,1),(1,1)) x1 + (1,1) cons_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: proper#_A(x1) = ((1,1),(1,1)) x1 repItems_A(x1) = ((1,1),(1,1)) x1 + (1,1) tail_A(x1) = ((1,1),(1,1)) x1 + (1,1) pair_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,0),(1,1)) x2 + (1,1) zip_A(x1,x2) = ((1,1),(1,1)) x2 + (1,1) take_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) s_A(x1) = ((1,1),(1,1)) x1 + (1,1) incr_A(x1) = ((1,1),(1,1)) x1 + (1,1) cons_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(mark(X1),X2) -> cons#(X1,X2) p2: cons#(ok(X1),ok(X2)) -> cons#(X1,X2) and R consists of: r1: active(pairNs()) -> mark(cons(|0|(),incr(oddNs()))) r2: active(oddNs()) -> mark(incr(pairNs())) r3: active(incr(cons(X,XS))) -> mark(cons(s(X),incr(XS))) r4: active(take(|0|(),XS)) -> mark(nil()) r5: active(take(s(N),cons(X,XS))) -> mark(cons(X,take(N,XS))) r6: active(zip(nil(),XS)) -> mark(nil()) r7: active(zip(X,nil())) -> mark(nil()) r8: active(zip(cons(X,XS),cons(Y,YS))) -> mark(cons(pair(X,Y),zip(XS,YS))) r9: active(tail(cons(X,XS))) -> mark(XS) r10: active(repItems(nil())) -> mark(nil()) r11: active(repItems(cons(X,XS))) -> mark(cons(X,cons(X,repItems(XS)))) r12: active(cons(X1,X2)) -> cons(active(X1),X2) r13: active(incr(X)) -> incr(active(X)) r14: active(s(X)) -> s(active(X)) r15: active(take(X1,X2)) -> take(active(X1),X2) r16: active(take(X1,X2)) -> take(X1,active(X2)) r17: active(zip(X1,X2)) -> zip(active(X1),X2) r18: active(zip(X1,X2)) -> zip(X1,active(X2)) r19: active(pair(X1,X2)) -> pair(active(X1),X2) r20: active(pair(X1,X2)) -> pair(X1,active(X2)) r21: active(tail(X)) -> tail(active(X)) r22: active(repItems(X)) -> repItems(active(X)) r23: cons(mark(X1),X2) -> mark(cons(X1,X2)) r24: incr(mark(X)) -> mark(incr(X)) r25: s(mark(X)) -> mark(s(X)) r26: take(mark(X1),X2) -> mark(take(X1,X2)) r27: take(X1,mark(X2)) -> mark(take(X1,X2)) r28: zip(mark(X1),X2) -> mark(zip(X1,X2)) r29: zip(X1,mark(X2)) -> mark(zip(X1,X2)) r30: pair(mark(X1),X2) -> mark(pair(X1,X2)) r31: pair(X1,mark(X2)) -> mark(pair(X1,X2)) r32: tail(mark(X)) -> mark(tail(X)) r33: repItems(mark(X)) -> mark(repItems(X)) r34: proper(pairNs()) -> ok(pairNs()) r35: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r36: proper(|0|()) -> ok(|0|()) r37: proper(incr(X)) -> incr(proper(X)) r38: proper(oddNs()) -> ok(oddNs()) r39: proper(s(X)) -> s(proper(X)) r40: proper(take(X1,X2)) -> take(proper(X1),proper(X2)) r41: proper(nil()) -> ok(nil()) r42: proper(zip(X1,X2)) -> zip(proper(X1),proper(X2)) r43: proper(pair(X1,X2)) -> pair(proper(X1),proper(X2)) r44: proper(tail(X)) -> tail(proper(X)) r45: proper(repItems(X)) -> repItems(proper(X)) r46: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r47: incr(ok(X)) -> ok(incr(X)) r48: s(ok(X)) -> ok(s(X)) r49: take(ok(X1),ok(X2)) -> ok(take(X1,X2)) r50: zip(ok(X1),ok(X2)) -> ok(zip(X1,X2)) r51: pair(ok(X1),ok(X2)) -> ok(pair(X1,X2)) r52: tail(ok(X)) -> ok(tail(X)) r53: repItems(ok(X)) -> ok(repItems(X)) r54: top(mark(X)) -> top(proper(X)) r55: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: cons#_A(x1,x2) = ((1,1),(1,0)) x1 + ((1,1),(0,0)) x2 mark_A(x1) = ((1,1),(1,1)) x1 + (1,1) ok_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: cons#_A(x1,x2) = ((0,1),(0,0)) x1 + ((1,0),(1,1)) x2 mark_A(x1) = x1 + (1,1) ok_A(x1) = ((0,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: s#(mark(X)) -> s#(X) p2: s#(ok(X)) -> s#(X) and R consists of: r1: active(pairNs()) -> mark(cons(|0|(),incr(oddNs()))) r2: active(oddNs()) -> mark(incr(pairNs())) r3: active(incr(cons(X,XS))) -> mark(cons(s(X),incr(XS))) r4: active(take(|0|(),XS)) -> mark(nil()) r5: active(take(s(N),cons(X,XS))) -> mark(cons(X,take(N,XS))) r6: active(zip(nil(),XS)) -> mark(nil()) r7: active(zip(X,nil())) -> mark(nil()) r8: active(zip(cons(X,XS),cons(Y,YS))) -> mark(cons(pair(X,Y),zip(XS,YS))) r9: active(tail(cons(X,XS))) -> mark(XS) r10: active(repItems(nil())) -> mark(nil()) r11: active(repItems(cons(X,XS))) -> mark(cons(X,cons(X,repItems(XS)))) r12: active(cons(X1,X2)) -> cons(active(X1),X2) r13: active(incr(X)) -> incr(active(X)) r14: active(s(X)) -> s(active(X)) r15: active(take(X1,X2)) -> take(active(X1),X2) r16: active(take(X1,X2)) -> take(X1,active(X2)) r17: active(zip(X1,X2)) -> zip(active(X1),X2) r18: active(zip(X1,X2)) -> zip(X1,active(X2)) r19: active(pair(X1,X2)) -> pair(active(X1),X2) r20: active(pair(X1,X2)) -> pair(X1,active(X2)) r21: active(tail(X)) -> tail(active(X)) r22: active(repItems(X)) -> repItems(active(X)) r23: cons(mark(X1),X2) -> mark(cons(X1,X2)) r24: incr(mark(X)) -> mark(incr(X)) r25: s(mark(X)) -> mark(s(X)) r26: take(mark(X1),X2) -> mark(take(X1,X2)) r27: take(X1,mark(X2)) -> mark(take(X1,X2)) r28: zip(mark(X1),X2) -> mark(zip(X1,X2)) r29: zip(X1,mark(X2)) -> mark(zip(X1,X2)) r30: pair(mark(X1),X2) -> mark(pair(X1,X2)) r31: pair(X1,mark(X2)) -> mark(pair(X1,X2)) r32: tail(mark(X)) -> mark(tail(X)) r33: repItems(mark(X)) -> mark(repItems(X)) r34: proper(pairNs()) -> ok(pairNs()) r35: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r36: proper(|0|()) -> ok(|0|()) r37: proper(incr(X)) -> incr(proper(X)) r38: proper(oddNs()) -> ok(oddNs()) r39: proper(s(X)) -> s(proper(X)) r40: proper(take(X1,X2)) -> take(proper(X1),proper(X2)) r41: proper(nil()) -> ok(nil()) r42: proper(zip(X1,X2)) -> zip(proper(X1),proper(X2)) r43: proper(pair(X1,X2)) -> pair(proper(X1),proper(X2)) r44: proper(tail(X)) -> tail(proper(X)) r45: proper(repItems(X)) -> repItems(proper(X)) r46: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r47: incr(ok(X)) -> ok(incr(X)) r48: s(ok(X)) -> ok(s(X)) r49: take(ok(X1),ok(X2)) -> ok(take(X1,X2)) r50: zip(ok(X1),ok(X2)) -> ok(zip(X1,X2)) r51: pair(ok(X1),ok(X2)) -> ok(pair(X1,X2)) r52: tail(ok(X)) -> ok(tail(X)) r53: repItems(ok(X)) -> ok(repItems(X)) r54: top(mark(X)) -> top(proper(X)) r55: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: s#_A(x1) = ((1,1),(1,0)) x1 mark_A(x1) = ((1,1),(1,1)) x1 + (1,1) ok_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: s#_A(x1) = ((0,1),(1,0)) x1 mark_A(x1) = ((1,0),(1,0)) x1 + (1,1) ok_A(x1) = ((0,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: incr#(mark(X)) -> incr#(X) p2: incr#(ok(X)) -> incr#(X) and R consists of: r1: active(pairNs()) -> mark(cons(|0|(),incr(oddNs()))) r2: active(oddNs()) -> mark(incr(pairNs())) r3: active(incr(cons(X,XS))) -> mark(cons(s(X),incr(XS))) r4: active(take(|0|(),XS)) -> mark(nil()) r5: active(take(s(N),cons(X,XS))) -> mark(cons(X,take(N,XS))) r6: active(zip(nil(),XS)) -> mark(nil()) r7: active(zip(X,nil())) -> mark(nil()) r8: active(zip(cons(X,XS),cons(Y,YS))) -> mark(cons(pair(X,Y),zip(XS,YS))) r9: active(tail(cons(X,XS))) -> mark(XS) r10: active(repItems(nil())) -> mark(nil()) r11: active(repItems(cons(X,XS))) -> mark(cons(X,cons(X,repItems(XS)))) r12: active(cons(X1,X2)) -> cons(active(X1),X2) r13: active(incr(X)) -> incr(active(X)) r14: active(s(X)) -> s(active(X)) r15: active(take(X1,X2)) -> take(active(X1),X2) r16: active(take(X1,X2)) -> take(X1,active(X2)) r17: active(zip(X1,X2)) -> zip(active(X1),X2) r18: active(zip(X1,X2)) -> zip(X1,active(X2)) r19: active(pair(X1,X2)) -> pair(active(X1),X2) r20: active(pair(X1,X2)) -> pair(X1,active(X2)) r21: active(tail(X)) -> tail(active(X)) r22: active(repItems(X)) -> repItems(active(X)) r23: cons(mark(X1),X2) -> mark(cons(X1,X2)) r24: incr(mark(X)) -> mark(incr(X)) r25: s(mark(X)) -> mark(s(X)) r26: take(mark(X1),X2) -> mark(take(X1,X2)) r27: take(X1,mark(X2)) -> mark(take(X1,X2)) r28: zip(mark(X1),X2) -> mark(zip(X1,X2)) r29: zip(X1,mark(X2)) -> mark(zip(X1,X2)) r30: pair(mark(X1),X2) -> mark(pair(X1,X2)) r31: pair(X1,mark(X2)) -> mark(pair(X1,X2)) r32: tail(mark(X)) -> mark(tail(X)) r33: repItems(mark(X)) -> mark(repItems(X)) r34: proper(pairNs()) -> ok(pairNs()) r35: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r36: proper(|0|()) -> ok(|0|()) r37: proper(incr(X)) -> incr(proper(X)) r38: proper(oddNs()) -> ok(oddNs()) r39: proper(s(X)) -> s(proper(X)) r40: proper(take(X1,X2)) -> take(proper(X1),proper(X2)) r41: proper(nil()) -> ok(nil()) r42: proper(zip(X1,X2)) -> zip(proper(X1),proper(X2)) r43: proper(pair(X1,X2)) -> pair(proper(X1),proper(X2)) r44: proper(tail(X)) -> tail(proper(X)) r45: proper(repItems(X)) -> repItems(proper(X)) r46: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r47: incr(ok(X)) -> ok(incr(X)) r48: s(ok(X)) -> ok(s(X)) r49: take(ok(X1),ok(X2)) -> ok(take(X1,X2)) r50: zip(ok(X1),ok(X2)) -> ok(zip(X1,X2)) r51: pair(ok(X1),ok(X2)) -> ok(pair(X1,X2)) r52: tail(ok(X)) -> ok(tail(X)) r53: repItems(ok(X)) -> ok(repItems(X)) r54: top(mark(X)) -> top(proper(X)) r55: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: incr#_A(x1) = ((1,1),(1,1)) x1 mark_A(x1) = ((1,1),(1,1)) x1 + (1,1) ok_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: incr#_A(x1) = ((1,1),(0,1)) x1 mark_A(x1) = ((0,1),(1,1)) x1 + (1,1) ok_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: take#(mark(X1),X2) -> take#(X1,X2) p2: take#(ok(X1),ok(X2)) -> take#(X1,X2) p3: take#(X1,mark(X2)) -> take#(X1,X2) and R consists of: r1: active(pairNs()) -> mark(cons(|0|(),incr(oddNs()))) r2: active(oddNs()) -> mark(incr(pairNs())) r3: active(incr(cons(X,XS))) -> mark(cons(s(X),incr(XS))) r4: active(take(|0|(),XS)) -> mark(nil()) r5: active(take(s(N),cons(X,XS))) -> mark(cons(X,take(N,XS))) r6: active(zip(nil(),XS)) -> mark(nil()) r7: active(zip(X,nil())) -> mark(nil()) r8: active(zip(cons(X,XS),cons(Y,YS))) -> mark(cons(pair(X,Y),zip(XS,YS))) r9: active(tail(cons(X,XS))) -> mark(XS) r10: active(repItems(nil())) -> mark(nil()) r11: active(repItems(cons(X,XS))) -> mark(cons(X,cons(X,repItems(XS)))) r12: active(cons(X1,X2)) -> cons(active(X1),X2) r13: active(incr(X)) -> incr(active(X)) r14: active(s(X)) -> s(active(X)) r15: active(take(X1,X2)) -> take(active(X1),X2) r16: active(take(X1,X2)) -> take(X1,active(X2)) r17: active(zip(X1,X2)) -> zip(active(X1),X2) r18: active(zip(X1,X2)) -> zip(X1,active(X2)) r19: active(pair(X1,X2)) -> pair(active(X1),X2) r20: active(pair(X1,X2)) -> pair(X1,active(X2)) r21: active(tail(X)) -> tail(active(X)) r22: active(repItems(X)) -> repItems(active(X)) r23: cons(mark(X1),X2) -> mark(cons(X1,X2)) r24: incr(mark(X)) -> mark(incr(X)) r25: s(mark(X)) -> mark(s(X)) r26: take(mark(X1),X2) -> mark(take(X1,X2)) r27: take(X1,mark(X2)) -> mark(take(X1,X2)) r28: zip(mark(X1),X2) -> mark(zip(X1,X2)) r29: zip(X1,mark(X2)) -> mark(zip(X1,X2)) r30: pair(mark(X1),X2) -> mark(pair(X1,X2)) r31: pair(X1,mark(X2)) -> mark(pair(X1,X2)) r32: tail(mark(X)) -> mark(tail(X)) r33: repItems(mark(X)) -> mark(repItems(X)) r34: proper(pairNs()) -> ok(pairNs()) r35: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r36: proper(|0|()) -> ok(|0|()) r37: proper(incr(X)) -> incr(proper(X)) r38: proper(oddNs()) -> ok(oddNs()) r39: proper(s(X)) -> s(proper(X)) r40: proper(take(X1,X2)) -> take(proper(X1),proper(X2)) r41: proper(nil()) -> ok(nil()) r42: proper(zip(X1,X2)) -> zip(proper(X1),proper(X2)) r43: proper(pair(X1,X2)) -> pair(proper(X1),proper(X2)) r44: proper(tail(X)) -> tail(proper(X)) r45: proper(repItems(X)) -> repItems(proper(X)) r46: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r47: incr(ok(X)) -> ok(incr(X)) r48: s(ok(X)) -> ok(s(X)) r49: take(ok(X1),ok(X2)) -> ok(take(X1,X2)) r50: zip(ok(X1),ok(X2)) -> ok(zip(X1,X2)) r51: pair(ok(X1),ok(X2)) -> ok(pair(X1,X2)) r52: tail(ok(X)) -> ok(tail(X)) r53: repItems(ok(X)) -> ok(repItems(X)) r54: top(mark(X)) -> top(proper(X)) r55: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: take#_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 mark_A(x1) = ((1,1),(1,1)) x1 + (1,1) ok_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: take#_A(x1,x2) = ((0,0),(1,1)) x1 + ((1,1),(1,1)) x2 mark_A(x1) = ((1,1),(1,1)) x1 + (1,1) ok_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: pair#(mark(X1),X2) -> pair#(X1,X2) p2: pair#(ok(X1),ok(X2)) -> pair#(X1,X2) p3: pair#(X1,mark(X2)) -> pair#(X1,X2) and R consists of: r1: active(pairNs()) -> mark(cons(|0|(),incr(oddNs()))) r2: active(oddNs()) -> mark(incr(pairNs())) r3: active(incr(cons(X,XS))) -> mark(cons(s(X),incr(XS))) r4: active(take(|0|(),XS)) -> mark(nil()) r5: active(take(s(N),cons(X,XS))) -> mark(cons(X,take(N,XS))) r6: active(zip(nil(),XS)) -> mark(nil()) r7: active(zip(X,nil())) -> mark(nil()) r8: active(zip(cons(X,XS),cons(Y,YS))) -> mark(cons(pair(X,Y),zip(XS,YS))) r9: active(tail(cons(X,XS))) -> mark(XS) r10: active(repItems(nil())) -> mark(nil()) r11: active(repItems(cons(X,XS))) -> mark(cons(X,cons(X,repItems(XS)))) r12: active(cons(X1,X2)) -> cons(active(X1),X2) r13: active(incr(X)) -> incr(active(X)) r14: active(s(X)) -> s(active(X)) r15: active(take(X1,X2)) -> take(active(X1),X2) r16: active(take(X1,X2)) -> take(X1,active(X2)) r17: active(zip(X1,X2)) -> zip(active(X1),X2) r18: active(zip(X1,X2)) -> zip(X1,active(X2)) r19: active(pair(X1,X2)) -> pair(active(X1),X2) r20: active(pair(X1,X2)) -> pair(X1,active(X2)) r21: active(tail(X)) -> tail(active(X)) r22: active(repItems(X)) -> repItems(active(X)) r23: cons(mark(X1),X2) -> mark(cons(X1,X2)) r24: incr(mark(X)) -> mark(incr(X)) r25: s(mark(X)) -> mark(s(X)) r26: take(mark(X1),X2) -> mark(take(X1,X2)) r27: take(X1,mark(X2)) -> mark(take(X1,X2)) r28: zip(mark(X1),X2) -> mark(zip(X1,X2)) r29: zip(X1,mark(X2)) -> mark(zip(X1,X2)) r30: pair(mark(X1),X2) -> mark(pair(X1,X2)) r31: pair(X1,mark(X2)) -> mark(pair(X1,X2)) r32: tail(mark(X)) -> mark(tail(X)) r33: repItems(mark(X)) -> mark(repItems(X)) r34: proper(pairNs()) -> ok(pairNs()) r35: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r36: proper(|0|()) -> ok(|0|()) r37: proper(incr(X)) -> incr(proper(X)) r38: proper(oddNs()) -> ok(oddNs()) r39: proper(s(X)) -> s(proper(X)) r40: proper(take(X1,X2)) -> take(proper(X1),proper(X2)) r41: proper(nil()) -> ok(nil()) r42: proper(zip(X1,X2)) -> zip(proper(X1),proper(X2)) r43: proper(pair(X1,X2)) -> pair(proper(X1),proper(X2)) r44: proper(tail(X)) -> tail(proper(X)) r45: proper(repItems(X)) -> repItems(proper(X)) r46: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r47: incr(ok(X)) -> ok(incr(X)) r48: s(ok(X)) -> ok(s(X)) r49: take(ok(X1),ok(X2)) -> ok(take(X1,X2)) r50: zip(ok(X1),ok(X2)) -> ok(zip(X1,X2)) r51: pair(ok(X1),ok(X2)) -> ok(pair(X1,X2)) r52: tail(ok(X)) -> ok(tail(X)) r53: repItems(ok(X)) -> ok(repItems(X)) r54: top(mark(X)) -> top(proper(X)) r55: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: pair#_A(x1,x2) = ((1,1),(0,0)) x1 + ((1,1),(1,0)) x2 mark_A(x1) = ((1,1),(1,1)) x1 + (1,1) ok_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: pair#_A(x1,x2) = x1 + ((1,1),(1,0)) x2 mark_A(x1) = ((1,1),(1,0)) x1 + (1,1) ok_A(x1) = ((1,1),(1,0)) x1 + (1,1) The next rules are strictly ordered: p1, p2, p3 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: zip#(mark(X1),X2) -> zip#(X1,X2) p2: zip#(ok(X1),ok(X2)) -> zip#(X1,X2) p3: zip#(X1,mark(X2)) -> zip#(X1,X2) and R consists of: r1: active(pairNs()) -> mark(cons(|0|(),incr(oddNs()))) r2: active(oddNs()) -> mark(incr(pairNs())) r3: active(incr(cons(X,XS))) -> mark(cons(s(X),incr(XS))) r4: active(take(|0|(),XS)) -> mark(nil()) r5: active(take(s(N),cons(X,XS))) -> mark(cons(X,take(N,XS))) r6: active(zip(nil(),XS)) -> mark(nil()) r7: active(zip(X,nil())) -> mark(nil()) r8: active(zip(cons(X,XS),cons(Y,YS))) -> mark(cons(pair(X,Y),zip(XS,YS))) r9: active(tail(cons(X,XS))) -> mark(XS) r10: active(repItems(nil())) -> mark(nil()) r11: active(repItems(cons(X,XS))) -> mark(cons(X,cons(X,repItems(XS)))) r12: active(cons(X1,X2)) -> cons(active(X1),X2) r13: active(incr(X)) -> incr(active(X)) r14: active(s(X)) -> s(active(X)) r15: active(take(X1,X2)) -> take(active(X1),X2) r16: active(take(X1,X2)) -> take(X1,active(X2)) r17: active(zip(X1,X2)) -> zip(active(X1),X2) r18: active(zip(X1,X2)) -> zip(X1,active(X2)) r19: active(pair(X1,X2)) -> pair(active(X1),X2) r20: active(pair(X1,X2)) -> pair(X1,active(X2)) r21: active(tail(X)) -> tail(active(X)) r22: active(repItems(X)) -> repItems(active(X)) r23: cons(mark(X1),X2) -> mark(cons(X1,X2)) r24: incr(mark(X)) -> mark(incr(X)) r25: s(mark(X)) -> mark(s(X)) r26: take(mark(X1),X2) -> mark(take(X1,X2)) r27: take(X1,mark(X2)) -> mark(take(X1,X2)) r28: zip(mark(X1),X2) -> mark(zip(X1,X2)) r29: zip(X1,mark(X2)) -> mark(zip(X1,X2)) r30: pair(mark(X1),X2) -> mark(pair(X1,X2)) r31: pair(X1,mark(X2)) -> mark(pair(X1,X2)) r32: tail(mark(X)) -> mark(tail(X)) r33: repItems(mark(X)) -> mark(repItems(X)) r34: proper(pairNs()) -> ok(pairNs()) r35: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r36: proper(|0|()) -> ok(|0|()) r37: proper(incr(X)) -> incr(proper(X)) r38: proper(oddNs()) -> ok(oddNs()) r39: proper(s(X)) -> s(proper(X)) r40: proper(take(X1,X2)) -> take(proper(X1),proper(X2)) r41: proper(nil()) -> ok(nil()) r42: proper(zip(X1,X2)) -> zip(proper(X1),proper(X2)) r43: proper(pair(X1,X2)) -> pair(proper(X1),proper(X2)) r44: proper(tail(X)) -> tail(proper(X)) r45: proper(repItems(X)) -> repItems(proper(X)) r46: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r47: incr(ok(X)) -> ok(incr(X)) r48: s(ok(X)) -> ok(s(X)) r49: take(ok(X1),ok(X2)) -> ok(take(X1,X2)) r50: zip(ok(X1),ok(X2)) -> ok(zip(X1,X2)) r51: pair(ok(X1),ok(X2)) -> ok(pair(X1,X2)) r52: tail(ok(X)) -> ok(tail(X)) r53: repItems(ok(X)) -> ok(repItems(X)) r54: top(mark(X)) -> top(proper(X)) r55: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: zip#_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 mark_A(x1) = ((1,1),(1,1)) x1 + (1,1) ok_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: zip#_A(x1,x2) = ((0,0),(1,1)) x1 + ((1,1),(1,1)) x2 mark_A(x1) = ((1,1),(1,1)) x1 + (1,1) ok_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: repItems#(mark(X)) -> repItems#(X) p2: repItems#(ok(X)) -> repItems#(X) and R consists of: r1: active(pairNs()) -> mark(cons(|0|(),incr(oddNs()))) r2: active(oddNs()) -> mark(incr(pairNs())) r3: active(incr(cons(X,XS))) -> mark(cons(s(X),incr(XS))) r4: active(take(|0|(),XS)) -> mark(nil()) r5: active(take(s(N),cons(X,XS))) -> mark(cons(X,take(N,XS))) r6: active(zip(nil(),XS)) -> mark(nil()) r7: active(zip(X,nil())) -> mark(nil()) r8: active(zip(cons(X,XS),cons(Y,YS))) -> mark(cons(pair(X,Y),zip(XS,YS))) r9: active(tail(cons(X,XS))) -> mark(XS) r10: active(repItems(nil())) -> mark(nil()) r11: active(repItems(cons(X,XS))) -> mark(cons(X,cons(X,repItems(XS)))) r12: active(cons(X1,X2)) -> cons(active(X1),X2) r13: active(incr(X)) -> incr(active(X)) r14: active(s(X)) -> s(active(X)) r15: active(take(X1,X2)) -> take(active(X1),X2) r16: active(take(X1,X2)) -> take(X1,active(X2)) r17: active(zip(X1,X2)) -> zip(active(X1),X2) r18: active(zip(X1,X2)) -> zip(X1,active(X2)) r19: active(pair(X1,X2)) -> pair(active(X1),X2) r20: active(pair(X1,X2)) -> pair(X1,active(X2)) r21: active(tail(X)) -> tail(active(X)) r22: active(repItems(X)) -> repItems(active(X)) r23: cons(mark(X1),X2) -> mark(cons(X1,X2)) r24: incr(mark(X)) -> mark(incr(X)) r25: s(mark(X)) -> mark(s(X)) r26: take(mark(X1),X2) -> mark(take(X1,X2)) r27: take(X1,mark(X2)) -> mark(take(X1,X2)) r28: zip(mark(X1),X2) -> mark(zip(X1,X2)) r29: zip(X1,mark(X2)) -> mark(zip(X1,X2)) r30: pair(mark(X1),X2) -> mark(pair(X1,X2)) r31: pair(X1,mark(X2)) -> mark(pair(X1,X2)) r32: tail(mark(X)) -> mark(tail(X)) r33: repItems(mark(X)) -> mark(repItems(X)) r34: proper(pairNs()) -> ok(pairNs()) r35: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r36: proper(|0|()) -> ok(|0|()) r37: proper(incr(X)) -> incr(proper(X)) r38: proper(oddNs()) -> ok(oddNs()) r39: proper(s(X)) -> s(proper(X)) r40: proper(take(X1,X2)) -> take(proper(X1),proper(X2)) r41: proper(nil()) -> ok(nil()) r42: proper(zip(X1,X2)) -> zip(proper(X1),proper(X2)) r43: proper(pair(X1,X2)) -> pair(proper(X1),proper(X2)) r44: proper(tail(X)) -> tail(proper(X)) r45: proper(repItems(X)) -> repItems(proper(X)) r46: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r47: incr(ok(X)) -> ok(incr(X)) r48: s(ok(X)) -> ok(s(X)) r49: take(ok(X1),ok(X2)) -> ok(take(X1,X2)) r50: zip(ok(X1),ok(X2)) -> ok(zip(X1,X2)) r51: pair(ok(X1),ok(X2)) -> ok(pair(X1,X2)) r52: tail(ok(X)) -> ok(tail(X)) r53: repItems(ok(X)) -> ok(repItems(X)) r54: top(mark(X)) -> top(proper(X)) r55: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: repItems#_A(x1) = ((1,0),(1,0)) x1 mark_A(x1) = ((1,1),(1,1)) x1 + (1,1) ok_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: repItems#_A(x1) = x1 mark_A(x1) = ((0,0),(1,0)) x1 + (1,1) ok_A(x1) = ((0,0),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: tail#(mark(X)) -> tail#(X) p2: tail#(ok(X)) -> tail#(X) and R consists of: r1: active(pairNs()) -> mark(cons(|0|(),incr(oddNs()))) r2: active(oddNs()) -> mark(incr(pairNs())) r3: active(incr(cons(X,XS))) -> mark(cons(s(X),incr(XS))) r4: active(take(|0|(),XS)) -> mark(nil()) r5: active(take(s(N),cons(X,XS))) -> mark(cons(X,take(N,XS))) r6: active(zip(nil(),XS)) -> mark(nil()) r7: active(zip(X,nil())) -> mark(nil()) r8: active(zip(cons(X,XS),cons(Y,YS))) -> mark(cons(pair(X,Y),zip(XS,YS))) r9: active(tail(cons(X,XS))) -> mark(XS) r10: active(repItems(nil())) -> mark(nil()) r11: active(repItems(cons(X,XS))) -> mark(cons(X,cons(X,repItems(XS)))) r12: active(cons(X1,X2)) -> cons(active(X1),X2) r13: active(incr(X)) -> incr(active(X)) r14: active(s(X)) -> s(active(X)) r15: active(take(X1,X2)) -> take(active(X1),X2) r16: active(take(X1,X2)) -> take(X1,active(X2)) r17: active(zip(X1,X2)) -> zip(active(X1),X2) r18: active(zip(X1,X2)) -> zip(X1,active(X2)) r19: active(pair(X1,X2)) -> pair(active(X1),X2) r20: active(pair(X1,X2)) -> pair(X1,active(X2)) r21: active(tail(X)) -> tail(active(X)) r22: active(repItems(X)) -> repItems(active(X)) r23: cons(mark(X1),X2) -> mark(cons(X1,X2)) r24: incr(mark(X)) -> mark(incr(X)) r25: s(mark(X)) -> mark(s(X)) r26: take(mark(X1),X2) -> mark(take(X1,X2)) r27: take(X1,mark(X2)) -> mark(take(X1,X2)) r28: zip(mark(X1),X2) -> mark(zip(X1,X2)) r29: zip(X1,mark(X2)) -> mark(zip(X1,X2)) r30: pair(mark(X1),X2) -> mark(pair(X1,X2)) r31: pair(X1,mark(X2)) -> mark(pair(X1,X2)) r32: tail(mark(X)) -> mark(tail(X)) r33: repItems(mark(X)) -> mark(repItems(X)) r34: proper(pairNs()) -> ok(pairNs()) r35: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r36: proper(|0|()) -> ok(|0|()) r37: proper(incr(X)) -> incr(proper(X)) r38: proper(oddNs()) -> ok(oddNs()) r39: proper(s(X)) -> s(proper(X)) r40: proper(take(X1,X2)) -> take(proper(X1),proper(X2)) r41: proper(nil()) -> ok(nil()) r42: proper(zip(X1,X2)) -> zip(proper(X1),proper(X2)) r43: proper(pair(X1,X2)) -> pair(proper(X1),proper(X2)) r44: proper(tail(X)) -> tail(proper(X)) r45: proper(repItems(X)) -> repItems(proper(X)) r46: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r47: incr(ok(X)) -> ok(incr(X)) r48: s(ok(X)) -> ok(s(X)) r49: take(ok(X1),ok(X2)) -> ok(take(X1,X2)) r50: zip(ok(X1),ok(X2)) -> ok(zip(X1,X2)) r51: pair(ok(X1),ok(X2)) -> ok(pair(X1,X2)) r52: tail(ok(X)) -> ok(tail(X)) r53: repItems(ok(X)) -> ok(repItems(X)) r54: top(mark(X)) -> top(proper(X)) r55: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: tail#_A(x1) = ((1,1),(1,0)) x1 mark_A(x1) = ((1,1),(1,1)) x1 + (1,1) ok_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: tail#_A(x1) = ((0,1),(1,1)) x1 mark_A(x1) = ((1,1),(1,1)) x1 + (1,1) ok_A(x1) = ((1,0),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.