YES We show the termination of the TRS R: a__f(g(X),Y) -> a__f(mark(X),f(g(X),Y)) mark(f(X1,X2)) -> a__f(mark(X1),X2) mark(g(X)) -> g(mark(X)) a__f(X1,X2) -> f(X1,X2) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__f#(g(X),Y) -> a__f#(mark(X),f(g(X),Y)) p2: a__f#(g(X),Y) -> mark#(X) p3: mark#(f(X1,X2)) -> a__f#(mark(X1),X2) p4: mark#(f(X1,X2)) -> mark#(X1) p5: mark#(g(X)) -> mark#(X) and R consists of: r1: a__f(g(X),Y) -> a__f(mark(X),f(g(X),Y)) r2: mark(f(X1,X2)) -> a__f(mark(X1),X2) r3: mark(g(X)) -> g(mark(X)) r4: a__f(X1,X2) -> f(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__f#(g(X),Y) -> a__f#(mark(X),f(g(X),Y)) p2: a__f#(g(X),Y) -> mark#(X) p3: mark#(g(X)) -> mark#(X) p4: mark#(f(X1,X2)) -> mark#(X1) p5: mark#(f(X1,X2)) -> a__f#(mark(X1),X2) and R consists of: r1: a__f(g(X),Y) -> a__f(mark(X),f(g(X),Y)) r2: mark(f(X1,X2)) -> a__f(mark(X1),X2) r3: mark(g(X)) -> g(mark(X)) r4: a__f(X1,X2) -> f(X1,X2) The set of usable rules consists of r1, r2, r3, r4 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: a__f#_A(x1,x2) = ((1,0),(1,0)) x1 g_A(x1) = ((1,1),(1,1)) x1 + (2,2) mark_A(x1) = ((1,1),(1,1)) x1 + (1,1) f_A(x1,x2) = ((1,1),(1,1)) x1 + (1,3) mark#_A(x1) = ((1,1),(1,1)) x1 a__f_A(x1,x2) = ((1,1),(1,1)) x1 + (2,3) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: a__f#_A(x1,x2) = ((0,1),(1,1)) x1 g_A(x1) = x1 + (4,1) mark_A(x1) = ((0,0),(1,1)) x1 + (3,5) f_A(x1,x2) = x1 + (1,1) mark#_A(x1) = ((0,1),(0,1)) x1 + (5,6) a__f_A(x1,x2) = ((0,0),(1,1)) x1 + (4,0) The next rules are strictly ordered: p1, p2, p3, p4, p5 We remove them from the problem. Then no dependency pair remains.