YES We show the termination of the TRS R: a__fst(|0|(),Z) -> nil() a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) a__from(X) -> cons(mark(X),from(s(X))) a__add(|0|(),X) -> mark(X) a__add(s(X),Y) -> s(add(X,Y)) a__len(nil()) -> |0|() a__len(cons(X,Z)) -> s(len(Z)) mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) mark(from(X)) -> a__from(mark(X)) mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) mark(len(X)) -> a__len(mark(X)) mark(|0|()) -> |0|() mark(s(X)) -> s(X) mark(nil()) -> nil() mark(cons(X1,X2)) -> cons(mark(X1),X2) a__fst(X1,X2) -> fst(X1,X2) a__from(X) -> from(X) a__add(X1,X2) -> add(X1,X2) a__len(X) -> len(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__fst#(s(X),cons(Y,Z)) -> mark#(Y) p2: a__from#(X) -> mark#(X) p3: a__add#(|0|(),X) -> mark#(X) p4: mark#(fst(X1,X2)) -> a__fst#(mark(X1),mark(X2)) p5: mark#(fst(X1,X2)) -> mark#(X1) p6: mark#(fst(X1,X2)) -> mark#(X2) p7: mark#(from(X)) -> a__from#(mark(X)) p8: mark#(from(X)) -> mark#(X) p9: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p10: mark#(add(X1,X2)) -> mark#(X1) p11: mark#(add(X1,X2)) -> mark#(X2) p12: mark#(len(X)) -> a__len#(mark(X)) p13: mark#(len(X)) -> mark#(X) p14: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p13, p14} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__fst#(s(X),cons(Y,Z)) -> mark#(Y) p2: mark#(cons(X1,X2)) -> mark#(X1) p3: mark#(len(X)) -> mark#(X) p4: mark#(add(X1,X2)) -> mark#(X2) p5: mark#(add(X1,X2)) -> mark#(X1) p6: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p7: a__add#(|0|(),X) -> mark#(X) p8: mark#(from(X)) -> mark#(X) p9: mark#(from(X)) -> a__from#(mark(X)) p10: a__from#(X) -> mark#(X) p11: mark#(fst(X1,X2)) -> mark#(X2) p12: mark#(fst(X1,X2)) -> mark#(X1) p13: mark#(fst(X1,X2)) -> a__fst#(mark(X1),mark(X2)) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: a__fst#_A(x1,x2) = x1 + ((0,1),(0,1)) x2 s_A(x1) = (1,0) cons_A(x1,x2) = x1 + (1,3) mark#_A(x1) = ((0,1),(0,1)) x1 + (3,0) len_A(x1) = x1 + (0,3) add_A(x1,x2) = x1 + x2 + (1,0) a__add#_A(x1,x2) = x1 + ((0,1),(0,1)) x2 + (3,0) mark_A(x1) = ((0,1),(0,1)) x1 + (3,0) |0|_A() = (1,2) from_A(x1) = x1 + (1,3) a__from#_A(x1) = ((0,1),(0,1)) x1 + (4,0) fst_A(x1,x2) = x1 + x2 + (1,1) a__fst_A(x1,x2) = x1 + x2 + (2,1) nil_A() = (0,0) a__from_A(x1) = x1 + (2,3) a__add_A(x1,x2) = ((0,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (2,0) a__len_A(x1) = x1 + (2,3) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: a__fst#_A(x1,x2) = ((1,1),(0,0)) x1 s_A(x1) = (1,1) cons_A(x1,x2) = (4,3) mark#_A(x1) = (4,1) len_A(x1) = (1,1) add_A(x1,x2) = (1,1) a__add#_A(x1,x2) = (4,1) mark_A(x1) = (2,1) |0|_A() = (1,1) from_A(x1) = (6,3) a__from#_A(x1) = (3,0) fst_A(x1,x2) = (1,1) a__fst_A(x1,x2) = (3,0) nil_A() = (1,1) a__from_A(x1) = (5,2) a__add_A(x1,x2) = (0,0) a__len_A(x1) = (0,0) The next rules are strictly ordered: p1, p2, p3, p8, p9, p10, p11, p12, p13 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(add(X1,X2)) -> mark#(X2) p2: mark#(add(X1,X2)) -> mark#(X1) p3: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p4: a__add#(|0|(),X) -> mark#(X) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(add(X1,X2)) -> mark#(X2) p2: mark#(add(X1,X2)) -> a__add#(mark(X1),mark(X2)) p3: a__add#(|0|(),X) -> mark#(X) p4: mark#(add(X1,X2)) -> mark#(X1) and R consists of: r1: a__fst(|0|(),Z) -> nil() r2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: a__add(|0|(),X) -> mark(X) r5: a__add(s(X),Y) -> s(add(X,Y)) r6: a__len(nil()) -> |0|() r7: a__len(cons(X,Z)) -> s(len(Z)) r8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) r9: mark(from(X)) -> a__from(mark(X)) r10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) r11: mark(len(X)) -> a__len(mark(X)) r12: mark(|0|()) -> |0|() r13: mark(s(X)) -> s(X) r14: mark(nil()) -> nil() r15: mark(cons(X1,X2)) -> cons(mark(X1),X2) r16: a__fst(X1,X2) -> fst(X1,X2) r17: a__from(X) -> from(X) r18: a__add(X1,X2) -> add(X1,X2) r19: a__len(X) -> len(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = x1 add_A(x1,x2) = x1 + ((1,1),(1,0)) x2 + (5,4) a__add#_A(x1,x2) = x2 + (1,0) mark_A(x1) = ((1,1),(1,0)) x1 + (1,1) |0|_A() = (1,1) a__fst_A(x1,x2) = ((1,1),(1,0)) x1 + x2 + (6,4) nil_A() = (1,1) s_A(x1) = ((0,1),(0,1)) x1 + (1,1) cons_A(x1,x2) = (1,1) fst_A(x1,x2) = ((1,1),(1,0)) x1 + x2 + (5,4) a__from_A(x1) = ((1,1),(1,0)) x1 + (4,3) from_A(x1) = ((1,1),(1,0)) x1 + (3,3) a__add_A(x1,x2) = x1 + ((1,1),(1,0)) x2 + (6,4) a__len_A(x1) = (3,2) len_A(x1) = (2,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((1,1),(1,1)) x1 + (0,1) add_A(x1,x2) = ((1,1),(1,1)) x1 + x2 + (1,1) a__add#_A(x1,x2) = x2 + (3,0) mark_A(x1) = (2,4) |0|_A() = (1,6) a__fst_A(x1,x2) = x1 + x2 + (0,1) nil_A() = (3,8) s_A(x1) = (3,6) cons_A(x1,x2) = (1,8) fst_A(x1,x2) = ((1,1),(1,0)) x1 + ((0,0),(1,1)) x2 + (1,2) a__from_A(x1) = (3,5) from_A(x1) = ((1,0),(1,1)) x1 + (4,6) a__add_A(x1,x2) = x1 a__len_A(x1) = (0,5) len_A(x1) = (1,6) The next rules are strictly ordered: p1, p2, p3, p4 We remove them from the problem. Then no dependency pair remains.