YES We show the termination of the TRS R: fst(|0|(),Z) -> nil() fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z))) from(X) -> cons(X,n__from(n__s(X))) add(|0|(),X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) len(nil()) -> |0|() len(cons(X,Z)) -> s(n__len(activate(Z))) fst(X1,X2) -> n__fst(X1,X2) from(X) -> n__from(X) s(X) -> n__s(X) add(X1,X2) -> n__add(X1,X2) len(X) -> n__len(X) activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(X) activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) activate(n__len(X)) -> len(activate(X)) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: fst#(s(X),cons(Y,Z)) -> activate#(X) p2: fst#(s(X),cons(Y,Z)) -> activate#(Z) p3: add#(s(X),Y) -> s#(n__add(activate(X),Y)) p4: add#(s(X),Y) -> activate#(X) p5: len#(cons(X,Z)) -> s#(n__len(activate(Z))) p6: len#(cons(X,Z)) -> activate#(Z) p7: activate#(n__fst(X1,X2)) -> fst#(activate(X1),activate(X2)) p8: activate#(n__fst(X1,X2)) -> activate#(X1) p9: activate#(n__fst(X1,X2)) -> activate#(X2) p10: activate#(n__from(X)) -> from#(activate(X)) p11: activate#(n__from(X)) -> activate#(X) p12: activate#(n__s(X)) -> s#(X) p13: activate#(n__add(X1,X2)) -> add#(activate(X1),activate(X2)) p14: activate#(n__add(X1,X2)) -> activate#(X1) p15: activate#(n__add(X1,X2)) -> activate#(X2) p16: activate#(n__len(X)) -> len#(activate(X)) p17: activate#(n__len(X)) -> activate#(X) and R consists of: r1: fst(|0|(),Z) -> nil() r2: fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z))) r3: from(X) -> cons(X,n__from(n__s(X))) r4: add(|0|(),X) -> X r5: add(s(X),Y) -> s(n__add(activate(X),Y)) r6: len(nil()) -> |0|() r7: len(cons(X,Z)) -> s(n__len(activate(Z))) r8: fst(X1,X2) -> n__fst(X1,X2) r9: from(X) -> n__from(X) r10: s(X) -> n__s(X) r11: add(X1,X2) -> n__add(X1,X2) r12: len(X) -> n__len(X) r13: activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2)) r14: activate(n__from(X)) -> from(activate(X)) r15: activate(n__s(X)) -> s(X) r16: activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) r17: activate(n__len(X)) -> len(activate(X)) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p4, p6, p7, p8, p9, p11, p13, p14, p15, p16, p17} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: fst#(s(X),cons(Y,Z)) -> activate#(X) p2: activate#(n__len(X)) -> activate#(X) p3: activate#(n__len(X)) -> len#(activate(X)) p4: len#(cons(X,Z)) -> activate#(Z) p5: activate#(n__add(X1,X2)) -> activate#(X2) p6: activate#(n__add(X1,X2)) -> activate#(X1) p7: activate#(n__add(X1,X2)) -> add#(activate(X1),activate(X2)) p8: add#(s(X),Y) -> activate#(X) p9: activate#(n__from(X)) -> activate#(X) p10: activate#(n__fst(X1,X2)) -> activate#(X2) p11: activate#(n__fst(X1,X2)) -> activate#(X1) p12: activate#(n__fst(X1,X2)) -> fst#(activate(X1),activate(X2)) p13: fst#(s(X),cons(Y,Z)) -> activate#(Z) and R consists of: r1: fst(|0|(),Z) -> nil() r2: fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z))) r3: from(X) -> cons(X,n__from(n__s(X))) r4: add(|0|(),X) -> X r5: add(s(X),Y) -> s(n__add(activate(X),Y)) r6: len(nil()) -> |0|() r7: len(cons(X,Z)) -> s(n__len(activate(Z))) r8: fst(X1,X2) -> n__fst(X1,X2) r9: from(X) -> n__from(X) r10: s(X) -> n__s(X) r11: add(X1,X2) -> n__add(X1,X2) r12: len(X) -> n__len(X) r13: activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2)) r14: activate(n__from(X)) -> from(activate(X)) r15: activate(n__s(X)) -> s(X) r16: activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) r17: activate(n__len(X)) -> len(activate(X)) r18: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: fst#_A(x1,x2) = ((0,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (1,0) s_A(x1) = x1 + (1,0) cons_A(x1,x2) = ((0,1),(0,1)) x2 + (1,0) activate#_A(x1) = ((0,1),(0,1)) x1 n__len_A(x1) = x1 + (1,2) len#_A(x1) = ((0,1),(0,1)) x1 + (1,0) activate_A(x1) = ((1,1),(0,1)) x1 + (1,0) n__add_A(x1,x2) = ((1,1),(0,1)) x1 + x2 + (1,3) add#_A(x1,x2) = ((0,1),(0,1)) x1 + ((0,1),(0,0)) x2 + (1,0) n__from_A(x1) = ((0,1),(0,1)) x1 + (2,1) n__fst_A(x1,x2) = ((1,1),(0,1)) x1 + x2 + (2,2) fst_A(x1,x2) = ((1,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (3,2) |0|_A() = (1,1) nil_A() = (1,1) from_A(x1) = ((0,1),(0,1)) x1 + (3,1) n__s_A(x1) = x1 + (1,0) add_A(x1,x2) = ((1,1),(0,1)) x1 + x2 + (2,3) len_A(x1) = x1 + (2,2) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: fst#_A(x1,x2) = (0,0) s_A(x1) = (9,8) cons_A(x1,x2) = (4,3) activate#_A(x1) = (1,1) n__len_A(x1) = ((0,0),(1,0)) x1 + (1,1) len#_A(x1) = (0,0) activate_A(x1) = x1 + (1,1) n__add_A(x1,x2) = ((1,1),(0,0)) x1 + ((1,1),(0,0)) x2 + (2,3) add#_A(x1,x2) = (0,0) n__from_A(x1) = (6,3) n__fst_A(x1,x2) = x1 + (1,3) fst_A(x1,x2) = (3,2) |0|_A() = (1,8) nil_A() = (4,3) from_A(x1) = (5,2) n__s_A(x1) = (1,1) add_A(x1,x2) = ((0,1),(0,0)) x1 + x2 + (0,2) len_A(x1) = ((1,0),(1,1)) x1 The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13 We remove them from the problem. Then no dependency pair remains.