YES We show the termination of the TRS R: active(f(f(a()))) -> mark(c(f(g(f(a()))))) active(f(X)) -> f(active(X)) active(g(X)) -> g(active(X)) f(mark(X)) -> mark(f(X)) g(mark(X)) -> mark(g(X)) proper(f(X)) -> f(proper(X)) proper(a()) -> ok(a()) proper(c(X)) -> c(proper(X)) proper(g(X)) -> g(proper(X)) f(ok(X)) -> ok(f(X)) c(ok(X)) -> ok(c(X)) g(ok(X)) -> ok(g(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(f(a()))) -> c#(f(g(f(a())))) p2: active#(f(f(a()))) -> f#(g(f(a()))) p3: active#(f(f(a()))) -> g#(f(a())) p4: active#(f(X)) -> f#(active(X)) p5: active#(f(X)) -> active#(X) p6: active#(g(X)) -> g#(active(X)) p7: active#(g(X)) -> active#(X) p8: f#(mark(X)) -> f#(X) p9: g#(mark(X)) -> g#(X) p10: proper#(f(X)) -> f#(proper(X)) p11: proper#(f(X)) -> proper#(X) p12: proper#(c(X)) -> c#(proper(X)) p13: proper#(c(X)) -> proper#(X) p14: proper#(g(X)) -> g#(proper(X)) p15: proper#(g(X)) -> proper#(X) p16: f#(ok(X)) -> f#(X) p17: c#(ok(X)) -> c#(X) p18: g#(ok(X)) -> g#(X) p19: top#(mark(X)) -> top#(proper(X)) p20: top#(mark(X)) -> proper#(X) p21: top#(ok(X)) -> top#(active(X)) p22: top#(ok(X)) -> active#(X) and R consists of: r1: active(f(f(a()))) -> mark(c(f(g(f(a()))))) r2: active(f(X)) -> f(active(X)) r3: active(g(X)) -> g(active(X)) r4: f(mark(X)) -> mark(f(X)) r5: g(mark(X)) -> mark(g(X)) r6: proper(f(X)) -> f(proper(X)) r7: proper(a()) -> ok(a()) r8: proper(c(X)) -> c(proper(X)) r9: proper(g(X)) -> g(proper(X)) r10: f(ok(X)) -> ok(f(X)) r11: c(ok(X)) -> ok(c(X)) r12: g(ok(X)) -> ok(g(X)) r13: top(mark(X)) -> top(proper(X)) r14: top(ok(X)) -> top(active(X)) The estimated dependency graph contains the following SCCs: {p19, p21} {p5, p7} {p11, p13, p15} {p8, p16} {p9, p18} {p17} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: top#(ok(X)) -> top#(active(X)) p2: top#(mark(X)) -> top#(proper(X)) and R consists of: r1: active(f(f(a()))) -> mark(c(f(g(f(a()))))) r2: active(f(X)) -> f(active(X)) r3: active(g(X)) -> g(active(X)) r4: f(mark(X)) -> mark(f(X)) r5: g(mark(X)) -> mark(g(X)) r6: proper(f(X)) -> f(proper(X)) r7: proper(a()) -> ok(a()) r8: proper(c(X)) -> c(proper(X)) r9: proper(g(X)) -> g(proper(X)) r10: f(ok(X)) -> ok(f(X)) r11: c(ok(X)) -> ok(c(X)) r12: g(ok(X)) -> ok(g(X)) r13: top(mark(X)) -> top(proper(X)) r14: top(ok(X)) -> top(active(X)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: top#_A(x1) = x1 ok_A(x1) = x1 + (0,1) active_A(x1) = x1 + (0,1) mark_A(x1) = ((1,0),(1,0)) x1 + (2,1) proper_A(x1) = ((1,0),(1,0)) x1 + (1,1) f_A(x1) = ((1,0),(1,0)) x1 + (1,1) g_A(x1) = ((1,0),(1,0)) x1 + (1,1) c_A(x1) = (1,1) a_A() = (2,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: top#_A(x1) = (0,0) ok_A(x1) = x1 + (1,0) active_A(x1) = (3,1) mark_A(x1) = (1,1) proper_A(x1) = ((1,1),(0,1)) x1 + (0,1) f_A(x1) = x1 + (2,0) g_A(x1) = (2,1) c_A(x1) = (2,1) a_A() = (1,1) The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: top#(ok(X)) -> top#(active(X)) and R consists of: r1: active(f(f(a()))) -> mark(c(f(g(f(a()))))) r2: active(f(X)) -> f(active(X)) r3: active(g(X)) -> g(active(X)) r4: f(mark(X)) -> mark(f(X)) r5: g(mark(X)) -> mark(g(X)) r6: proper(f(X)) -> f(proper(X)) r7: proper(a()) -> ok(a()) r8: proper(c(X)) -> c(proper(X)) r9: proper(g(X)) -> g(proper(X)) r10: f(ok(X)) -> ok(f(X)) r11: c(ok(X)) -> ok(c(X)) r12: g(ok(X)) -> ok(g(X)) r13: top(mark(X)) -> top(proper(X)) r14: top(ok(X)) -> top(active(X)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: top#(ok(X)) -> top#(active(X)) and R consists of: r1: active(f(f(a()))) -> mark(c(f(g(f(a()))))) r2: active(f(X)) -> f(active(X)) r3: active(g(X)) -> g(active(X)) r4: f(mark(X)) -> mark(f(X)) r5: g(mark(X)) -> mark(g(X)) r6: proper(f(X)) -> f(proper(X)) r7: proper(a()) -> ok(a()) r8: proper(c(X)) -> c(proper(X)) r9: proper(g(X)) -> g(proper(X)) r10: f(ok(X)) -> ok(f(X)) r11: c(ok(X)) -> ok(c(X)) r12: g(ok(X)) -> ok(g(X)) r13: top(mark(X)) -> top(proper(X)) r14: top(ok(X)) -> top(active(X)) The set of usable rules consists of r1, r2, r3, r4, r5, r10, r12 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: top#_A(x1) = ((1,0),(1,1)) x1 ok_A(x1) = ((1,1),(1,0)) x1 + (3,2) active_A(x1) = ((1,1),(1,0)) x1 + (1,0) f_A(x1) = ((1,1),(1,0)) x1 + (2,1) mark_A(x1) = (1,1) g_A(x1) = ((1,1),(1,0)) x1 + (2,1) a_A() = (1,1) c_A(x1) = x1 + (1,0) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: top#_A(x1) = ((1,0),(1,0)) x1 ok_A(x1) = x1 + (3,4) active_A(x1) = (2,1) f_A(x1) = x1 + (0,1) mark_A(x1) = (3,5) g_A(x1) = ((0,0),(1,0)) x1 + (1,1) a_A() = (1,1) c_A(x1) = (0,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(g(X)) -> active#(X) p2: active#(f(X)) -> active#(X) and R consists of: r1: active(f(f(a()))) -> mark(c(f(g(f(a()))))) r2: active(f(X)) -> f(active(X)) r3: active(g(X)) -> g(active(X)) r4: f(mark(X)) -> mark(f(X)) r5: g(mark(X)) -> mark(g(X)) r6: proper(f(X)) -> f(proper(X)) r7: proper(a()) -> ok(a()) r8: proper(c(X)) -> c(proper(X)) r9: proper(g(X)) -> g(proper(X)) r10: f(ok(X)) -> ok(f(X)) r11: c(ok(X)) -> ok(c(X)) r12: g(ok(X)) -> ok(g(X)) r13: top(mark(X)) -> top(proper(X)) r14: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: active#_A(x1) = ((1,1),(1,1)) x1 g_A(x1) = ((1,1),(1,1)) x1 + (1,1) f_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: active#_A(x1) = ((1,1),(0,1)) x1 g_A(x1) = x1 + (1,1) f_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: proper#(g(X)) -> proper#(X) p2: proper#(c(X)) -> proper#(X) p3: proper#(f(X)) -> proper#(X) and R consists of: r1: active(f(f(a()))) -> mark(c(f(g(f(a()))))) r2: active(f(X)) -> f(active(X)) r3: active(g(X)) -> g(active(X)) r4: f(mark(X)) -> mark(f(X)) r5: g(mark(X)) -> mark(g(X)) r6: proper(f(X)) -> f(proper(X)) r7: proper(a()) -> ok(a()) r8: proper(c(X)) -> c(proper(X)) r9: proper(g(X)) -> g(proper(X)) r10: f(ok(X)) -> ok(f(X)) r11: c(ok(X)) -> ok(c(X)) r12: g(ok(X)) -> ok(g(X)) r13: top(mark(X)) -> top(proper(X)) r14: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: proper#_A(x1) = ((1,1),(1,1)) x1 g_A(x1) = ((1,1),(1,1)) x1 + (1,1) c_A(x1) = ((1,1),(1,1)) x1 + (1,1) f_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: proper#_A(x1) = ((1,1),(1,1)) x1 g_A(x1) = ((1,1),(0,1)) x1 + (1,1) c_A(x1) = ((1,1),(1,1)) x1 + (1,1) f_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1, p2, p3 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(mark(X)) -> f#(X) p2: f#(ok(X)) -> f#(X) and R consists of: r1: active(f(f(a()))) -> mark(c(f(g(f(a()))))) r2: active(f(X)) -> f(active(X)) r3: active(g(X)) -> g(active(X)) r4: f(mark(X)) -> mark(f(X)) r5: g(mark(X)) -> mark(g(X)) r6: proper(f(X)) -> f(proper(X)) r7: proper(a()) -> ok(a()) r8: proper(c(X)) -> c(proper(X)) r9: proper(g(X)) -> g(proper(X)) r10: f(ok(X)) -> ok(f(X)) r11: c(ok(X)) -> ok(c(X)) r12: g(ok(X)) -> ok(g(X)) r13: top(mark(X)) -> top(proper(X)) r14: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1) = ((1,1),(1,0)) x1 mark_A(x1) = ((1,1),(1,1)) x1 + (1,1) ok_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1) = ((1,1),(0,1)) x1 mark_A(x1) = ((0,1),(1,0)) x1 + (1,1) ok_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g#(mark(X)) -> g#(X) p2: g#(ok(X)) -> g#(X) and R consists of: r1: active(f(f(a()))) -> mark(c(f(g(f(a()))))) r2: active(f(X)) -> f(active(X)) r3: active(g(X)) -> g(active(X)) r4: f(mark(X)) -> mark(f(X)) r5: g(mark(X)) -> mark(g(X)) r6: proper(f(X)) -> f(proper(X)) r7: proper(a()) -> ok(a()) r8: proper(c(X)) -> c(proper(X)) r9: proper(g(X)) -> g(proper(X)) r10: f(ok(X)) -> ok(f(X)) r11: c(ok(X)) -> ok(c(X)) r12: g(ok(X)) -> ok(g(X)) r13: top(mark(X)) -> top(proper(X)) r14: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: g#_A(x1) = ((1,1),(1,1)) x1 mark_A(x1) = ((1,1),(1,1)) x1 + (1,1) ok_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: g#_A(x1) = ((0,1),(1,1)) x1 mark_A(x1) = ((1,0),(1,1)) x1 + (1,1) ok_A(x1) = ((0,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: c#(ok(X)) -> c#(X) and R consists of: r1: active(f(f(a()))) -> mark(c(f(g(f(a()))))) r2: active(f(X)) -> f(active(X)) r3: active(g(X)) -> g(active(X)) r4: f(mark(X)) -> mark(f(X)) r5: g(mark(X)) -> mark(g(X)) r6: proper(f(X)) -> f(proper(X)) r7: proper(a()) -> ok(a()) r8: proper(c(X)) -> c(proper(X)) r9: proper(g(X)) -> g(proper(X)) r10: f(ok(X)) -> ok(f(X)) r11: c(ok(X)) -> ok(c(X)) r12: g(ok(X)) -> ok(g(X)) r13: top(mark(X)) -> top(proper(X)) r14: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: c#_A(x1) = ((1,1),(1,1)) x1 ok_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: c#_A(x1) = ((0,1),(1,1)) x1 ok_A(x1) = ((1,0),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.