YES We show the termination of the TRS R: a__from(X) -> cons(mark(X),from(s(X))) a__length(nil()) -> |0|() a__length(cons(X,Y)) -> s(a__length1(Y)) a__length1(X) -> a__length(X) mark(from(X)) -> a__from(mark(X)) mark(length(X)) -> a__length(X) mark(length1(X)) -> a__length1(X) mark(cons(X1,X2)) -> cons(mark(X1),X2) mark(s(X)) -> s(mark(X)) mark(nil()) -> nil() mark(|0|()) -> |0|() a__from(X) -> from(X) a__length(X) -> length(X) a__length1(X) -> length1(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__from#(X) -> mark#(X) p2: a__length#(cons(X,Y)) -> a__length1#(Y) p3: a__length1#(X) -> a__length#(X) p4: mark#(from(X)) -> a__from#(mark(X)) p5: mark#(from(X)) -> mark#(X) p6: mark#(length(X)) -> a__length#(X) p7: mark#(length1(X)) -> a__length1#(X) p8: mark#(cons(X1,X2)) -> mark#(X1) p9: mark#(s(X)) -> mark#(X) and R consists of: r1: a__from(X) -> cons(mark(X),from(s(X))) r2: a__length(nil()) -> |0|() r3: a__length(cons(X,Y)) -> s(a__length1(Y)) r4: a__length1(X) -> a__length(X) r5: mark(from(X)) -> a__from(mark(X)) r6: mark(length(X)) -> a__length(X) r7: mark(length1(X)) -> a__length1(X) r8: mark(cons(X1,X2)) -> cons(mark(X1),X2) r9: mark(s(X)) -> s(mark(X)) r10: mark(nil()) -> nil() r11: mark(|0|()) -> |0|() r12: a__from(X) -> from(X) r13: a__length(X) -> length(X) r14: a__length1(X) -> length1(X) The estimated dependency graph contains the following SCCs: {p1, p4, p5, p8, p9} {p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__from#(X) -> mark#(X) p2: mark#(s(X)) -> mark#(X) p3: mark#(cons(X1,X2)) -> mark#(X1) p4: mark#(from(X)) -> mark#(X) p5: mark#(from(X)) -> a__from#(mark(X)) and R consists of: r1: a__from(X) -> cons(mark(X),from(s(X))) r2: a__length(nil()) -> |0|() r3: a__length(cons(X,Y)) -> s(a__length1(Y)) r4: a__length1(X) -> a__length(X) r5: mark(from(X)) -> a__from(mark(X)) r6: mark(length(X)) -> a__length(X) r7: mark(length1(X)) -> a__length1(X) r8: mark(cons(X1,X2)) -> cons(mark(X1),X2) r9: mark(s(X)) -> s(mark(X)) r10: mark(nil()) -> nil() r11: mark(|0|()) -> |0|() r12: a__from(X) -> from(X) r13: a__length(X) -> length(X) r14: a__length1(X) -> length1(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: a__from#_A(x1) = ((1,1),(1,0)) x1 + (1,0) mark#_A(x1) = ((1,1),(0,0)) x1 s_A(x1) = x1 cons_A(x1,x2) = ((0,0),(1,1)) x1 + (0,1) from_A(x1) = ((0,0),(1,1)) x1 + (0,2) mark_A(x1) = ((0,0),(1,1)) x1 a__from_A(x1) = ((0,0),(1,1)) x1 + (0,2) a__length_A(x1) = (0,1) nil_A() = (0,1) |0|_A() = (0,1) a__length1_A(x1) = (0,1) length_A(x1) = (0,1) length1_A(x1) = (0,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: a__from#_A(x1) = x1 mark#_A(x1) = (1,5) s_A(x1) = ((0,0),(1,0)) x1 + (1,1) cons_A(x1,x2) = (2,0) from_A(x1) = (1,1) mark_A(x1) = (4,5) a__from_A(x1) = (2,1) a__length_A(x1) = (2,4) nil_A() = (1,0) |0|_A() = (0,0) a__length1_A(x1) = (3,4) length_A(x1) = (1,0) length1_A(x1) = (3,0) The next rules are strictly ordered: p1, p3, p4, p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) and R consists of: r1: a__from(X) -> cons(mark(X),from(s(X))) r2: a__length(nil()) -> |0|() r3: a__length(cons(X,Y)) -> s(a__length1(Y)) r4: a__length1(X) -> a__length(X) r5: mark(from(X)) -> a__from(mark(X)) r6: mark(length(X)) -> a__length(X) r7: mark(length1(X)) -> a__length1(X) r8: mark(cons(X1,X2)) -> cons(mark(X1),X2) r9: mark(s(X)) -> s(mark(X)) r10: mark(nil()) -> nil() r11: mark(|0|()) -> |0|() r12: a__from(X) -> from(X) r13: a__length(X) -> length(X) r14: a__length1(X) -> length1(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) and R consists of: r1: a__from(X) -> cons(mark(X),from(s(X))) r2: a__length(nil()) -> |0|() r3: a__length(cons(X,Y)) -> s(a__length1(Y)) r4: a__length1(X) -> a__length(X) r5: mark(from(X)) -> a__from(mark(X)) r6: mark(length(X)) -> a__length(X) r7: mark(length1(X)) -> a__length1(X) r8: mark(cons(X1,X2)) -> cons(mark(X1),X2) r9: mark(s(X)) -> s(mark(X)) r10: mark(nil()) -> nil() r11: mark(|0|()) -> |0|() r12: a__from(X) -> from(X) r13: a__length(X) -> length(X) r14: a__length1(X) -> length1(X) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((1,1),(1,1)) x1 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((0,1),(1,1)) x1 s_A(x1) = ((1,0),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__length#(cons(X,Y)) -> a__length1#(Y) p2: a__length1#(X) -> a__length#(X) and R consists of: r1: a__from(X) -> cons(mark(X),from(s(X))) r2: a__length(nil()) -> |0|() r3: a__length(cons(X,Y)) -> s(a__length1(Y)) r4: a__length1(X) -> a__length(X) r5: mark(from(X)) -> a__from(mark(X)) r6: mark(length(X)) -> a__length(X) r7: mark(length1(X)) -> a__length1(X) r8: mark(cons(X1,X2)) -> cons(mark(X1),X2) r9: mark(s(X)) -> s(mark(X)) r10: mark(nil()) -> nil() r11: mark(|0|()) -> |0|() r12: a__from(X) -> from(X) r13: a__length(X) -> length(X) r14: a__length1(X) -> length1(X) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: a__length#_A(x1) = x1 cons_A(x1,x2) = ((0,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (2,1) a__length1#_A(x1) = x1 + (1,0) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: a__length#_A(x1) = (1,0) cons_A(x1,x2) = (1,1) a__length1#_A(x1) = (0,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.