YES We show the termination of the TRS R: c(z,x,a()) -> f(b(b(f(z),z),x)) b(y,b(z,a())) -> f(b(c(f(a()),y,z),z)) f(c(c(z,a(),a()),x,a())) -> z -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: c#(z,x,a()) -> f#(b(b(f(z),z),x)) p2: c#(z,x,a()) -> b#(b(f(z),z),x) p3: c#(z,x,a()) -> b#(f(z),z) p4: c#(z,x,a()) -> f#(z) p5: b#(y,b(z,a())) -> f#(b(c(f(a()),y,z),z)) p6: b#(y,b(z,a())) -> b#(c(f(a()),y,z),z) p7: b#(y,b(z,a())) -> c#(f(a()),y,z) p8: b#(y,b(z,a())) -> f#(a()) and R consists of: r1: c(z,x,a()) -> f(b(b(f(z),z),x)) r2: b(y,b(z,a())) -> f(b(c(f(a()),y,z),z)) r3: f(c(c(z,a(),a()),x,a())) -> z The estimated dependency graph contains the following SCCs: {p2, p3, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: c#(z,x,a()) -> b#(b(f(z),z),x) p2: b#(y,b(z,a())) -> c#(f(a()),y,z) p3: c#(z,x,a()) -> b#(f(z),z) p4: b#(y,b(z,a())) -> b#(c(f(a()),y,z),z) and R consists of: r1: c(z,x,a()) -> f(b(b(f(z),z),x)) r2: b(y,b(z,a())) -> f(b(c(f(a()),y,z),z)) r3: f(c(c(z,a(),a()),x,a())) -> z The set of usable rules consists of r1, r2, r3 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: c#_A(x1,x2,x3) = ((1,1),(0,0)) x1 + ((0,1),(0,0)) x2 + ((0,1),(0,0)) x3 a_A() = (1,6) b#_A(x1,x2) = ((0,1),(0,0)) x1 + ((0,1),(0,0)) x2 + (1,0) b_A(x1,x2) = x1 + (1,3) f_A(x1) = ((1,0),(1,0)) x1 + (0,1) c_A(x1,x2,x3) = ((1,1),(0,0)) x1 + x2 + ((1,1),(0,0)) x3 + (0,2) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: c#_A(x1,x2,x3) = (1,0) a_A() = (1,1) b#_A(x1,x2) = (0,1) b_A(x1,x2) = (2,2) f_A(x1) = (1,2) c_A(x1,x2,x3) = ((0,1),(0,0)) x3 + (1,1) The next rules are strictly ordered: p1, p2, p3, p4 We remove them from the problem. Then no dependency pair remains.