YES We show the termination of the TRS R: f(b(a(),z)) -> z b(y,b(a(),z)) -> b(f(c(y,y,a())),b(f(z),a())) f(f(f(c(z,x,a())))) -> b(f(x),z) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: b#(y,b(a(),z)) -> b#(f(c(y,y,a())),b(f(z),a())) p2: b#(y,b(a(),z)) -> f#(c(y,y,a())) p3: b#(y,b(a(),z)) -> b#(f(z),a()) p4: b#(y,b(a(),z)) -> f#(z) p5: f#(f(f(c(z,x,a())))) -> b#(f(x),z) p6: f#(f(f(c(z,x,a())))) -> f#(x) and R consists of: r1: f(b(a(),z)) -> z r2: b(y,b(a(),z)) -> b(f(c(y,y,a())),b(f(z),a())) r3: f(f(f(c(z,x,a())))) -> b(f(x),z) The estimated dependency graph contains the following SCCs: {p1, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: b#(y,b(a(),z)) -> b#(f(c(y,y,a())),b(f(z),a())) p2: b#(y,b(a(),z)) -> f#(z) p3: f#(f(f(c(z,x,a())))) -> f#(x) p4: f#(f(f(c(z,x,a())))) -> b#(f(x),z) and R consists of: r1: f(b(a(),z)) -> z r2: b(y,b(a(),z)) -> b(f(c(y,y,a())),b(f(z),a())) r3: f(f(f(c(z,x,a())))) -> b(f(x),z) The set of usable rules consists of r1, r2, r3 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: b#_A(x1,x2) = ((0,1),(0,0)) x2 b_A(x1,x2) = x2 + (1,1) a_A() = (0,0) f_A(x1) = x1 + (1,1) c_A(x1,x2,x3) = ((1,1),(0,1)) x1 + ((0,1),(1,1)) x2 + (1,1) f#_A(x1) = ((0,1),(0,0)) x1 2. matrix interpretations: carrier: N^2 order: standard order interpretations: b#_A(x1,x2) = (1,1) b_A(x1,x2) = ((1,0),(1,0)) x2 + (2,3) a_A() = (0,1) f_A(x1) = ((0,0),(1,0)) x1 + (1,1) c_A(x1,x2,x3) = ((0,1),(0,1)) x1 + (1,1) f#_A(x1) = (0,0) The next rules are strictly ordered: p2, p3, p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: b#(y,b(a(),z)) -> b#(f(c(y,y,a())),b(f(z),a())) and R consists of: r1: f(b(a(),z)) -> z r2: b(y,b(a(),z)) -> b(f(c(y,y,a())),b(f(z),a())) r3: f(f(f(c(z,x,a())))) -> b(f(x),z) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: b#(y,b(a(),z)) -> b#(f(c(y,y,a())),b(f(z),a())) and R consists of: r1: f(b(a(),z)) -> z r2: b(y,b(a(),z)) -> b(f(c(y,y,a())),b(f(z),a())) r3: f(f(f(c(z,x,a())))) -> b(f(x),z) The set of usable rules consists of r1, r2, r3 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: b#_A(x1,x2) = x2 b_A(x1,x2) = x1 + ((0,1),(1,0)) x2 + (1,1) a_A() = (0,0) f_A(x1) = ((0,1),(1,1)) x1 + (0,1) c_A(x1,x2,x3) = ((1,1),(1,0)) x1 + ((1,1),(0,0)) x2 + (1,0) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: b#_A(x1,x2) = x2 b_A(x1,x2) = ((0,1),(0,1)) x1 + (2,1) a_A() = (1,1) f_A(x1) = (1,0) c_A(x1,x2,x3) = ((1,1),(0,1)) x1 + ((0,1),(1,0)) x2 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.