YES We show the termination of the TRS R: c(c(b(c(x)))) -> b(a(|0|(),c(x))) c(c(x)) -> b(c(b(c(x)))) a(|0|(),x) -> c(c(x)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: c#(c(b(c(x)))) -> a#(|0|(),c(x)) p2: c#(c(x)) -> c#(b(c(x))) p3: a#(|0|(),x) -> c#(c(x)) p4: a#(|0|(),x) -> c#(x) and R consists of: r1: c(c(b(c(x)))) -> b(a(|0|(),c(x))) r2: c(c(x)) -> b(c(b(c(x)))) r3: a(|0|(),x) -> c(c(x)) The estimated dependency graph contains the following SCCs: {p1, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: c#(c(b(c(x)))) -> a#(|0|(),c(x)) p2: a#(|0|(),x) -> c#(x) p3: a#(|0|(),x) -> c#(c(x)) and R consists of: r1: c(c(b(c(x)))) -> b(a(|0|(),c(x))) r2: c(c(x)) -> b(c(b(c(x)))) r3: a(|0|(),x) -> c(c(x)) The set of usable rules consists of r1, r2, r3 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: c#_A(x1) = ((0,1),(0,0)) x1 c_A(x1) = ((0,0),(1,1)) x1 + (1,1) b_A(x1) = x1 + (1,0) a#_A(x1,x2) = x1 + ((1,1),(0,0)) x2 |0|_A() = (1,1) a_A(x1,x2) = x1 + ((0,0),(1,1)) x2 + (1,3) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: c#_A(x1) = (1,0) c_A(x1) = (2,2) b_A(x1) = (1,2) a#_A(x1,x2) = x1 |0|_A() = (1,1) a_A(x1,x2) = x1 + (0,1) The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: c#(c(b(c(x)))) -> a#(|0|(),c(x)) p2: a#(|0|(),x) -> c#(c(x)) and R consists of: r1: c(c(b(c(x)))) -> b(a(|0|(),c(x))) r2: c(c(x)) -> b(c(b(c(x)))) r3: a(|0|(),x) -> c(c(x)) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: c#(c(b(c(x)))) -> a#(|0|(),c(x)) p2: a#(|0|(),x) -> c#(c(x)) and R consists of: r1: c(c(b(c(x)))) -> b(a(|0|(),c(x))) r2: c(c(x)) -> b(c(b(c(x)))) r3: a(|0|(),x) -> c(c(x)) The set of usable rules consists of r1, r2, r3 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: c#_A(x1) = ((0,1),(0,0)) x1 c_A(x1) = ((0,1),(1,0)) x1 + (1,4) b_A(x1) = x1 + (2,1) a#_A(x1,x2) = x2 + (5,0) |0|_A() = (1,1) a_A(x1,x2) = x2 + (5,5) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: c#_A(x1) = (0,0) c_A(x1) = (2,1) b_A(x1) = (1,1) a#_A(x1,x2) = (1,1) |0|_A() = (1,1) a_A(x1,x2) = (3,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.