YES We show the termination of the TRS R: |intersect'ii'in|(cons(X,X0),cons(X,X1)) -> |intersect'ii'out|() |intersect'ii'in|(Xs,cons(X0,Ys)) -> |u'1'1|(|intersect'ii'in|(Xs,Ys)) |u'1'1|(|intersect'ii'out|()) -> |intersect'ii'out|() |intersect'ii'in|(cons(X0,Xs),Ys) -> |u'2'1|(|intersect'ii'in|(Xs,Ys)) |u'2'1|(|intersect'ii'out|()) -> |intersect'ii'out|() |reduce'ii'in|(sequent(cons(if(A,B),Fs),Gs),NF) -> |u'3'1|(|reduce'ii'in|(sequent(cons(|x'2b|(|x'2d|(B),A),Fs),Gs),NF)) |u'3'1|(|reduce'ii'out|()) -> |reduce'ii'out|() |reduce'ii'in|(sequent(cons(iff(A,B),Fs),Gs),NF) -> |u'4'1|(|reduce'ii'in|(sequent(cons(|x'2a|(if(A,B),if(B,A)),Fs),Gs),NF)) |u'4'1|(|reduce'ii'out|()) -> |reduce'ii'out|() |reduce'ii'in|(sequent(cons(|x'2a|(F1,F2),Fs),Gs),NF) -> |u'5'1|(|reduce'ii'in|(sequent(cons(F1,cons(F2,Fs)),Gs),NF)) |u'5'1|(|reduce'ii'out|()) -> |reduce'ii'out|() |reduce'ii'in|(sequent(cons(|x'2b|(F1,F2),Fs),Gs),NF) -> |u'6'1|(|reduce'ii'in|(sequent(cons(F1,Fs),Gs),NF),F2,Fs,Gs,NF) |u'6'1|(|reduce'ii'out|(),F2,Fs,Gs,NF) -> |u'6'2|(|reduce'ii'in|(sequent(cons(F2,Fs),Gs),NF)) |u'6'2|(|reduce'ii'out|()) -> |reduce'ii'out|() |reduce'ii'in|(sequent(cons(|x'2d|(F1),Fs),Gs),NF) -> |u'7'1|(|reduce'ii'in|(sequent(Fs,cons(F1,Gs)),NF)) |u'7'1|(|reduce'ii'out|()) -> |reduce'ii'out|() |reduce'ii'in|(sequent(Fs,cons(if(A,B),Gs)),NF) -> |u'8'1|(|reduce'ii'in|(sequent(Fs,cons(|x'2b|(|x'2d|(B),A),Gs)),NF)) |u'8'1|(|reduce'ii'out|()) -> |reduce'ii'out|() |reduce'ii'in|(sequent(Fs,cons(iff(A,B),Gs)),NF) -> |u'9'1|(|reduce'ii'in|(sequent(Fs,cons(|x'2a|(if(A,B),if(B,A)),Gs)),NF)) |u'9'1|(|reduce'ii'out|()) -> |reduce'ii'out|() |reduce'ii'in|(sequent(cons(p(V),Fs),Gs),sequent(Left,Right)) -> |u'10'1|(|reduce'ii'in|(sequent(Fs,Gs),sequent(cons(p(V),Left),Right))) |u'10'1|(|reduce'ii'out|()) -> |reduce'ii'out|() |reduce'ii'in|(sequent(Fs,cons(|x'2b|(G1,G2),Gs)),NF) -> |u'11'1|(|reduce'ii'in|(sequent(Fs,cons(G1,cons(G2,Gs))),NF)) |u'11'1|(|reduce'ii'out|()) -> |reduce'ii'out|() |reduce'ii'in|(sequent(Fs,cons(|x'2a|(G1,G2),Gs)),NF) -> |u'12'1|(|reduce'ii'in|(sequent(Fs,cons(G1,Gs)),NF),Fs,G2,Gs,NF) |u'12'1|(|reduce'ii'out|(),Fs,G2,Gs,NF) -> |u'12'2|(|reduce'ii'in|(sequent(Fs,cons(G2,Gs)),NF)) |u'12'2|(|reduce'ii'out|()) -> |reduce'ii'out|() |reduce'ii'in|(sequent(Fs,cons(|x'2d|(G1),Gs)),NF) -> |u'13'1|(|reduce'ii'in|(sequent(cons(G1,Fs),Gs),NF)) |u'13'1|(|reduce'ii'out|()) -> |reduce'ii'out|() |reduce'ii'in|(sequent(nil(),cons(p(V),Gs)),sequent(Left,Right)) -> |u'14'1|(|reduce'ii'in|(sequent(nil(),Gs),sequent(Left,cons(p(V),Right)))) |u'14'1|(|reduce'ii'out|()) -> |reduce'ii'out|() |reduce'ii'in|(sequent(nil(),nil()),sequent(F1,F2)) -> |u'15'1|(|intersect'ii'in|(F1,F2)) |u'15'1|(|intersect'ii'out|()) -> |reduce'ii'out|() |tautology'i'in|(F) -> |u'16'1|(|reduce'ii'in|(sequent(nil(),cons(F,nil())),sequent(nil(),nil()))) |u'16'1|(|reduce'ii'out|()) -> |tautology'i'out|() -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: |intersect'ii'in|#(Xs,cons(X0,Ys)) -> |u'1'1|#(|intersect'ii'in|(Xs,Ys)) p2: |intersect'ii'in|#(Xs,cons(X0,Ys)) -> |intersect'ii'in|#(Xs,Ys) p3: |intersect'ii'in|#(cons(X0,Xs),Ys) -> |u'2'1|#(|intersect'ii'in|(Xs,Ys)) p4: |intersect'ii'in|#(cons(X0,Xs),Ys) -> |intersect'ii'in|#(Xs,Ys) p5: |reduce'ii'in|#(sequent(cons(if(A,B),Fs),Gs),NF) -> |u'3'1|#(|reduce'ii'in|(sequent(cons(|x'2b|(|x'2d|(B),A),Fs),Gs),NF)) p6: |reduce'ii'in|#(sequent(cons(if(A,B),Fs),Gs),NF) -> |reduce'ii'in|#(sequent(cons(|x'2b|(|x'2d|(B),A),Fs),Gs),NF) p7: |reduce'ii'in|#(sequent(cons(iff(A,B),Fs),Gs),NF) -> |u'4'1|#(|reduce'ii'in|(sequent(cons(|x'2a|(if(A,B),if(B,A)),Fs),Gs),NF)) p8: |reduce'ii'in|#(sequent(cons(iff(A,B),Fs),Gs),NF) -> |reduce'ii'in|#(sequent(cons(|x'2a|(if(A,B),if(B,A)),Fs),Gs),NF) p9: |reduce'ii'in|#(sequent(cons(|x'2a|(F1,F2),Fs),Gs),NF) -> |u'5'1|#(|reduce'ii'in|(sequent(cons(F1,cons(F2,Fs)),Gs),NF)) p10: |reduce'ii'in|#(sequent(cons(|x'2a|(F1,F2),Fs),Gs),NF) -> |reduce'ii'in|#(sequent(cons(F1,cons(F2,Fs)),Gs),NF) p11: |reduce'ii'in|#(sequent(cons(|x'2b|(F1,F2),Fs),Gs),NF) -> |u'6'1|#(|reduce'ii'in|(sequent(cons(F1,Fs),Gs),NF),F2,Fs,Gs,NF) p12: |reduce'ii'in|#(sequent(cons(|x'2b|(F1,F2),Fs),Gs),NF) -> |reduce'ii'in|#(sequent(cons(F1,Fs),Gs),NF) p13: |u'6'1|#(|reduce'ii'out|(),F2,Fs,Gs,NF) -> |u'6'2|#(|reduce'ii'in|(sequent(cons(F2,Fs),Gs),NF)) p14: |u'6'1|#(|reduce'ii'out|(),F2,Fs,Gs,NF) -> |reduce'ii'in|#(sequent(cons(F2,Fs),Gs),NF) p15: |reduce'ii'in|#(sequent(cons(|x'2d|(F1),Fs),Gs),NF) -> |u'7'1|#(|reduce'ii'in|(sequent(Fs,cons(F1,Gs)),NF)) p16: |reduce'ii'in|#(sequent(cons(|x'2d|(F1),Fs),Gs),NF) -> |reduce'ii'in|#(sequent(Fs,cons(F1,Gs)),NF) p17: |reduce'ii'in|#(sequent(Fs,cons(if(A,B),Gs)),NF) -> |u'8'1|#(|reduce'ii'in|(sequent(Fs,cons(|x'2b|(|x'2d|(B),A),Gs)),NF)) p18: |reduce'ii'in|#(sequent(Fs,cons(if(A,B),Gs)),NF) -> |reduce'ii'in|#(sequent(Fs,cons(|x'2b|(|x'2d|(B),A),Gs)),NF) p19: |reduce'ii'in|#(sequent(Fs,cons(iff(A,B),Gs)),NF) -> |u'9'1|#(|reduce'ii'in|(sequent(Fs,cons(|x'2a|(if(A,B),if(B,A)),Gs)),NF)) p20: |reduce'ii'in|#(sequent(Fs,cons(iff(A,B),Gs)),NF) -> |reduce'ii'in|#(sequent(Fs,cons(|x'2a|(if(A,B),if(B,A)),Gs)),NF) p21: |reduce'ii'in|#(sequent(cons(p(V),Fs),Gs),sequent(Left,Right)) -> |u'10'1|#(|reduce'ii'in|(sequent(Fs,Gs),sequent(cons(p(V),Left),Right))) p22: |reduce'ii'in|#(sequent(cons(p(V),Fs),Gs),sequent(Left,Right)) -> |reduce'ii'in|#(sequent(Fs,Gs),sequent(cons(p(V),Left),Right)) p23: |reduce'ii'in|#(sequent(Fs,cons(|x'2b|(G1,G2),Gs)),NF) -> |u'11'1|#(|reduce'ii'in|(sequent(Fs,cons(G1,cons(G2,Gs))),NF)) p24: |reduce'ii'in|#(sequent(Fs,cons(|x'2b|(G1,G2),Gs)),NF) -> |reduce'ii'in|#(sequent(Fs,cons(G1,cons(G2,Gs))),NF) p25: |reduce'ii'in|#(sequent(Fs,cons(|x'2a|(G1,G2),Gs)),NF) -> |u'12'1|#(|reduce'ii'in|(sequent(Fs,cons(G1,Gs)),NF),Fs,G2,Gs,NF) p26: |reduce'ii'in|#(sequent(Fs,cons(|x'2a|(G1,G2),Gs)),NF) -> |reduce'ii'in|#(sequent(Fs,cons(G1,Gs)),NF) p27: |u'12'1|#(|reduce'ii'out|(),Fs,G2,Gs,NF) -> |u'12'2|#(|reduce'ii'in|(sequent(Fs,cons(G2,Gs)),NF)) p28: |u'12'1|#(|reduce'ii'out|(),Fs,G2,Gs,NF) -> |reduce'ii'in|#(sequent(Fs,cons(G2,Gs)),NF) p29: |reduce'ii'in|#(sequent(Fs,cons(|x'2d|(G1),Gs)),NF) -> |u'13'1|#(|reduce'ii'in|(sequent(cons(G1,Fs),Gs),NF)) p30: |reduce'ii'in|#(sequent(Fs,cons(|x'2d|(G1),Gs)),NF) -> |reduce'ii'in|#(sequent(cons(G1,Fs),Gs),NF) p31: |reduce'ii'in|#(sequent(nil(),cons(p(V),Gs)),sequent(Left,Right)) -> |u'14'1|#(|reduce'ii'in|(sequent(nil(),Gs),sequent(Left,cons(p(V),Right)))) p32: |reduce'ii'in|#(sequent(nil(),cons(p(V),Gs)),sequent(Left,Right)) -> |reduce'ii'in|#(sequent(nil(),Gs),sequent(Left,cons(p(V),Right))) p33: |reduce'ii'in|#(sequent(nil(),nil()),sequent(F1,F2)) -> |u'15'1|#(|intersect'ii'in|(F1,F2)) p34: |reduce'ii'in|#(sequent(nil(),nil()),sequent(F1,F2)) -> |intersect'ii'in|#(F1,F2) p35: |tautology'i'in|#(F) -> |u'16'1|#(|reduce'ii'in|(sequent(nil(),cons(F,nil())),sequent(nil(),nil()))) p36: |tautology'i'in|#(F) -> |reduce'ii'in|#(sequent(nil(),cons(F,nil())),sequent(nil(),nil())) and R consists of: r1: |intersect'ii'in|(cons(X,X0),cons(X,X1)) -> |intersect'ii'out|() r2: |intersect'ii'in|(Xs,cons(X0,Ys)) -> |u'1'1|(|intersect'ii'in|(Xs,Ys)) r3: |u'1'1|(|intersect'ii'out|()) -> |intersect'ii'out|() r4: |intersect'ii'in|(cons(X0,Xs),Ys) -> |u'2'1|(|intersect'ii'in|(Xs,Ys)) r5: |u'2'1|(|intersect'ii'out|()) -> |intersect'ii'out|() r6: |reduce'ii'in|(sequent(cons(if(A,B),Fs),Gs),NF) -> |u'3'1|(|reduce'ii'in|(sequent(cons(|x'2b|(|x'2d|(B),A),Fs),Gs),NF)) r7: |u'3'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r8: |reduce'ii'in|(sequent(cons(iff(A,B),Fs),Gs),NF) -> |u'4'1|(|reduce'ii'in|(sequent(cons(|x'2a|(if(A,B),if(B,A)),Fs),Gs),NF)) r9: |u'4'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r10: |reduce'ii'in|(sequent(cons(|x'2a|(F1,F2),Fs),Gs),NF) -> |u'5'1|(|reduce'ii'in|(sequent(cons(F1,cons(F2,Fs)),Gs),NF)) r11: |u'5'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r12: |reduce'ii'in|(sequent(cons(|x'2b|(F1,F2),Fs),Gs),NF) -> |u'6'1|(|reduce'ii'in|(sequent(cons(F1,Fs),Gs),NF),F2,Fs,Gs,NF) r13: |u'6'1|(|reduce'ii'out|(),F2,Fs,Gs,NF) -> |u'6'2|(|reduce'ii'in|(sequent(cons(F2,Fs),Gs),NF)) r14: |u'6'2|(|reduce'ii'out|()) -> |reduce'ii'out|() r15: |reduce'ii'in|(sequent(cons(|x'2d|(F1),Fs),Gs),NF) -> |u'7'1|(|reduce'ii'in|(sequent(Fs,cons(F1,Gs)),NF)) r16: |u'7'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r17: |reduce'ii'in|(sequent(Fs,cons(if(A,B),Gs)),NF) -> |u'8'1|(|reduce'ii'in|(sequent(Fs,cons(|x'2b|(|x'2d|(B),A),Gs)),NF)) r18: |u'8'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r19: |reduce'ii'in|(sequent(Fs,cons(iff(A,B),Gs)),NF) -> |u'9'1|(|reduce'ii'in|(sequent(Fs,cons(|x'2a|(if(A,B),if(B,A)),Gs)),NF)) r20: |u'9'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r21: |reduce'ii'in|(sequent(cons(p(V),Fs),Gs),sequent(Left,Right)) -> |u'10'1|(|reduce'ii'in|(sequent(Fs,Gs),sequent(cons(p(V),Left),Right))) r22: |u'10'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r23: |reduce'ii'in|(sequent(Fs,cons(|x'2b|(G1,G2),Gs)),NF) -> |u'11'1|(|reduce'ii'in|(sequent(Fs,cons(G1,cons(G2,Gs))),NF)) r24: |u'11'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r25: |reduce'ii'in|(sequent(Fs,cons(|x'2a|(G1,G2),Gs)),NF) -> |u'12'1|(|reduce'ii'in|(sequent(Fs,cons(G1,Gs)),NF),Fs,G2,Gs,NF) r26: |u'12'1|(|reduce'ii'out|(),Fs,G2,Gs,NF) -> |u'12'2|(|reduce'ii'in|(sequent(Fs,cons(G2,Gs)),NF)) r27: |u'12'2|(|reduce'ii'out|()) -> |reduce'ii'out|() r28: |reduce'ii'in|(sequent(Fs,cons(|x'2d|(G1),Gs)),NF) -> |u'13'1|(|reduce'ii'in|(sequent(cons(G1,Fs),Gs),NF)) r29: |u'13'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r30: |reduce'ii'in|(sequent(nil(),cons(p(V),Gs)),sequent(Left,Right)) -> |u'14'1|(|reduce'ii'in|(sequent(nil(),Gs),sequent(Left,cons(p(V),Right)))) r31: |u'14'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r32: |reduce'ii'in|(sequent(nil(),nil()),sequent(F1,F2)) -> |u'15'1|(|intersect'ii'in|(F1,F2)) r33: |u'15'1|(|intersect'ii'out|()) -> |reduce'ii'out|() r34: |tautology'i'in|(F) -> |u'16'1|(|reduce'ii'in|(sequent(nil(),cons(F,nil())),sequent(nil(),nil()))) r35: |u'16'1|(|reduce'ii'out|()) -> |tautology'i'out|() The estimated dependency graph contains the following SCCs: {p6, p8, p10, p11, p12, p14, p16, p18, p20, p22, p24, p25, p26, p28, p30, p32} {p2, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: |reduce'ii'in|#(sequent(nil(),cons(p(V),Gs)),sequent(Left,Right)) -> |reduce'ii'in|#(sequent(nil(),Gs),sequent(Left,cons(p(V),Right))) p2: |reduce'ii'in|#(sequent(Fs,cons(|x'2d|(G1),Gs)),NF) -> |reduce'ii'in|#(sequent(cons(G1,Fs),Gs),NF) p3: |reduce'ii'in|#(sequent(Fs,cons(|x'2a|(G1,G2),Gs)),NF) -> |reduce'ii'in|#(sequent(Fs,cons(G1,Gs)),NF) p4: |reduce'ii'in|#(sequent(Fs,cons(|x'2a|(G1,G2),Gs)),NF) -> |u'12'1|#(|reduce'ii'in|(sequent(Fs,cons(G1,Gs)),NF),Fs,G2,Gs,NF) p5: |u'12'1|#(|reduce'ii'out|(),Fs,G2,Gs,NF) -> |reduce'ii'in|#(sequent(Fs,cons(G2,Gs)),NF) p6: |reduce'ii'in|#(sequent(Fs,cons(|x'2b|(G1,G2),Gs)),NF) -> |reduce'ii'in|#(sequent(Fs,cons(G1,cons(G2,Gs))),NF) p7: |reduce'ii'in|#(sequent(cons(p(V),Fs),Gs),sequent(Left,Right)) -> |reduce'ii'in|#(sequent(Fs,Gs),sequent(cons(p(V),Left),Right)) p8: |reduce'ii'in|#(sequent(Fs,cons(iff(A,B),Gs)),NF) -> |reduce'ii'in|#(sequent(Fs,cons(|x'2a|(if(A,B),if(B,A)),Gs)),NF) p9: |reduce'ii'in|#(sequent(cons(|x'2d|(F1),Fs),Gs),NF) -> |reduce'ii'in|#(sequent(Fs,cons(F1,Gs)),NF) p10: |reduce'ii'in|#(sequent(Fs,cons(if(A,B),Gs)),NF) -> |reduce'ii'in|#(sequent(Fs,cons(|x'2b|(|x'2d|(B),A),Gs)),NF) p11: |reduce'ii'in|#(sequent(cons(|x'2b|(F1,F2),Fs),Gs),NF) -> |reduce'ii'in|#(sequent(cons(F1,Fs),Gs),NF) p12: |reduce'ii'in|#(sequent(cons(|x'2b|(F1,F2),Fs),Gs),NF) -> |u'6'1|#(|reduce'ii'in|(sequent(cons(F1,Fs),Gs),NF),F2,Fs,Gs,NF) p13: |u'6'1|#(|reduce'ii'out|(),F2,Fs,Gs,NF) -> |reduce'ii'in|#(sequent(cons(F2,Fs),Gs),NF) p14: |reduce'ii'in|#(sequent(cons(|x'2a|(F1,F2),Fs),Gs),NF) -> |reduce'ii'in|#(sequent(cons(F1,cons(F2,Fs)),Gs),NF) p15: |reduce'ii'in|#(sequent(cons(iff(A,B),Fs),Gs),NF) -> |reduce'ii'in|#(sequent(cons(|x'2a|(if(A,B),if(B,A)),Fs),Gs),NF) p16: |reduce'ii'in|#(sequent(cons(if(A,B),Fs),Gs),NF) -> |reduce'ii'in|#(sequent(cons(|x'2b|(|x'2d|(B),A),Fs),Gs),NF) and R consists of: r1: |intersect'ii'in|(cons(X,X0),cons(X,X1)) -> |intersect'ii'out|() r2: |intersect'ii'in|(Xs,cons(X0,Ys)) -> |u'1'1|(|intersect'ii'in|(Xs,Ys)) r3: |u'1'1|(|intersect'ii'out|()) -> |intersect'ii'out|() r4: |intersect'ii'in|(cons(X0,Xs),Ys) -> |u'2'1|(|intersect'ii'in|(Xs,Ys)) r5: |u'2'1|(|intersect'ii'out|()) -> |intersect'ii'out|() r6: |reduce'ii'in|(sequent(cons(if(A,B),Fs),Gs),NF) -> |u'3'1|(|reduce'ii'in|(sequent(cons(|x'2b|(|x'2d|(B),A),Fs),Gs),NF)) r7: |u'3'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r8: |reduce'ii'in|(sequent(cons(iff(A,B),Fs),Gs),NF) -> |u'4'1|(|reduce'ii'in|(sequent(cons(|x'2a|(if(A,B),if(B,A)),Fs),Gs),NF)) r9: |u'4'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r10: |reduce'ii'in|(sequent(cons(|x'2a|(F1,F2),Fs),Gs),NF) -> |u'5'1|(|reduce'ii'in|(sequent(cons(F1,cons(F2,Fs)),Gs),NF)) r11: |u'5'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r12: |reduce'ii'in|(sequent(cons(|x'2b|(F1,F2),Fs),Gs),NF) -> |u'6'1|(|reduce'ii'in|(sequent(cons(F1,Fs),Gs),NF),F2,Fs,Gs,NF) r13: |u'6'1|(|reduce'ii'out|(),F2,Fs,Gs,NF) -> |u'6'2|(|reduce'ii'in|(sequent(cons(F2,Fs),Gs),NF)) r14: |u'6'2|(|reduce'ii'out|()) -> |reduce'ii'out|() r15: |reduce'ii'in|(sequent(cons(|x'2d|(F1),Fs),Gs),NF) -> |u'7'1|(|reduce'ii'in|(sequent(Fs,cons(F1,Gs)),NF)) r16: |u'7'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r17: |reduce'ii'in|(sequent(Fs,cons(if(A,B),Gs)),NF) -> |u'8'1|(|reduce'ii'in|(sequent(Fs,cons(|x'2b|(|x'2d|(B),A),Gs)),NF)) r18: |u'8'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r19: |reduce'ii'in|(sequent(Fs,cons(iff(A,B),Gs)),NF) -> |u'9'1|(|reduce'ii'in|(sequent(Fs,cons(|x'2a|(if(A,B),if(B,A)),Gs)),NF)) r20: |u'9'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r21: |reduce'ii'in|(sequent(cons(p(V),Fs),Gs),sequent(Left,Right)) -> |u'10'1|(|reduce'ii'in|(sequent(Fs,Gs),sequent(cons(p(V),Left),Right))) r22: |u'10'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r23: |reduce'ii'in|(sequent(Fs,cons(|x'2b|(G1,G2),Gs)),NF) -> |u'11'1|(|reduce'ii'in|(sequent(Fs,cons(G1,cons(G2,Gs))),NF)) r24: |u'11'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r25: |reduce'ii'in|(sequent(Fs,cons(|x'2a|(G1,G2),Gs)),NF) -> |u'12'1|(|reduce'ii'in|(sequent(Fs,cons(G1,Gs)),NF),Fs,G2,Gs,NF) r26: |u'12'1|(|reduce'ii'out|(),Fs,G2,Gs,NF) -> |u'12'2|(|reduce'ii'in|(sequent(Fs,cons(G2,Gs)),NF)) r27: |u'12'2|(|reduce'ii'out|()) -> |reduce'ii'out|() r28: |reduce'ii'in|(sequent(Fs,cons(|x'2d|(G1),Gs)),NF) -> |u'13'1|(|reduce'ii'in|(sequent(cons(G1,Fs),Gs),NF)) r29: |u'13'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r30: |reduce'ii'in|(sequent(nil(),cons(p(V),Gs)),sequent(Left,Right)) -> |u'14'1|(|reduce'ii'in|(sequent(nil(),Gs),sequent(Left,cons(p(V),Right)))) r31: |u'14'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r32: |reduce'ii'in|(sequent(nil(),nil()),sequent(F1,F2)) -> |u'15'1|(|intersect'ii'in|(F1,F2)) r33: |u'15'1|(|intersect'ii'out|()) -> |reduce'ii'out|() r34: |tautology'i'in|(F) -> |u'16'1|(|reduce'ii'in|(sequent(nil(),cons(F,nil())),sequent(nil(),nil()))) r35: |u'16'1|(|reduce'ii'out|()) -> |tautology'i'out|() The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: |reduce'ii'in|#_A(x1,x2) = ((0,1),(0,1)) x1 + x2 sequent_A(x1,x2) = x1 + x2 + (1,0) nil_A() = (0,1) cons_A(x1,x2) = ((0,0),(1,1)) x1 + x2 + (1,2) p_A(x1) = ((0,0),(1,1)) x1 + (1,1) |x'2d|_A(x1) = ((0,0),(1,1)) x1 + (1,1) |x'2a|_A(x1,x2) = ((0,1),(1,0)) x1 + ((0,1),(1,0)) x2 + (1,1) |u'12'1|#_A(x1,x2,x3,x4,x5) = ((0,1),(0,1)) x2 + ((1,1),(1,1)) x3 + ((0,1),(0,1)) x4 + x5 + (3,2) |reduce'ii'in|_A(x1,x2) = ((0,0),(1,0)) x1 + ((1,0),(1,0)) x2 + (7,3) |reduce'ii'out|_A() = (1,1) |x'2b|_A(x1,x2) = ((1,0),(1,1)) x1 + ((0,0),(1,1)) x2 + (0,3) iff_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (13,1) if_A(x1,x2) = ((0,0),(1,1)) x1 + ((0,0),(1,1)) x2 + (1,5) |u'6'1|#_A(x1,x2,x3,x4,x5) = ((1,1),(1,1)) x2 + ((0,1),(0,1)) x3 + ((0,1),(0,1)) x4 + x5 + (3,2) |u'1'1|_A(x1) = ((0,0),(1,0)) x1 + (2,0) |intersect'ii'out|_A() = (1,1) |u'2'1|_A(x1) = (3,1) |intersect'ii'in|_A(x1,x2) = ((0,0),(1,0)) x2 + (3,2) |u'6'2|_A(x1) = (2,1) |u'12'2|_A(x1) = ((0,1),(0,0)) x1 + (0,1) |u'15'1|_A(x1) = ((0,0),(1,1)) x1 + (2,0) |u'3'1|_A(x1) = (2,1) |u'4'1|_A(x1) = (7,1) |u'5'1|_A(x1) = x1 + (0,1) |u'6'1|_A(x1,x2,x3,x4,x5) = (3,4) |u'7'1|_A(x1) = x1 + (0,1) |u'8'1|_A(x1) = ((0,1),(0,0)) x1 + (1,1) |u'9'1|_A(x1) = (2,1) |u'10'1|_A(x1) = x1 + (0,1) |u'11'1|_A(x1) = x1 |u'12'1|_A(x1,x2,x3,x4,x5) = x5 + (5,1) |u'13'1|_A(x1) = x1 + (0,1) |u'14'1|_A(x1) = (2,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: |reduce'ii'in|#_A(x1,x2) = ((1,0),(1,0)) x2 sequent_A(x1,x2) = ((1,1),(1,1)) x2 + (1,1) nil_A() = (1,1) cons_A(x1,x2) = (1,1) p_A(x1) = (0,0) |x'2d|_A(x1) = (1,0) |x'2a|_A(x1,x2) = (1,1) |u'12'1|#_A(x1,x2,x3,x4,x5) = x3 + x5 |reduce'ii'in|_A(x1,x2) = (4,4) |reduce'ii'out|_A() = (1,1) |x'2b|_A(x1,x2) = (1,1) iff_A(x1,x2) = (1,1) if_A(x1,x2) = (1,1) |u'6'1|#_A(x1,x2,x3,x4,x5) = ((1,0),(1,0)) x5 + (1,1) |u'1'1|_A(x1) = (0,2) |intersect'ii'out|_A() = (2,3) |u'2'1|_A(x1) = (0,1) |intersect'ii'in|_A(x1,x2) = (1,1) |u'6'2|_A(x1) = (6,0) |u'12'2|_A(x1) = (2,1) |u'15'1|_A(x1) = (5,0) |u'3'1|_A(x1) = (5,0) |u'4'1|_A(x1) = (0,0) |u'5'1|_A(x1) = (2,1) |u'6'1|_A(x1,x2,x3,x4,x5) = (5,5) |u'7'1|_A(x1) = ((1,0),(1,0)) x1 |u'8'1|_A(x1) = (0,0) |u'9'1|_A(x1) = (0,5) |u'10'1|_A(x1) = ((0,1),(0,0)) x1 + (0,4) |u'11'1|_A(x1) = x1 + (2,0) |u'12'1|_A(x1,x2,x3,x4,x5) = ((1,1),(1,0)) x5 + (3,5) |u'13'1|_A(x1) = (1,4) |u'14'1|_A(x1) = (5,5) The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p7, p9, p11, p12, p13 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: |reduce'ii'in|#(sequent(Fs,cons(iff(A,B),Gs)),NF) -> |reduce'ii'in|#(sequent(Fs,cons(|x'2a|(if(A,B),if(B,A)),Gs)),NF) p2: |reduce'ii'in|#(sequent(Fs,cons(if(A,B),Gs)),NF) -> |reduce'ii'in|#(sequent(Fs,cons(|x'2b|(|x'2d|(B),A),Gs)),NF) p3: |reduce'ii'in|#(sequent(cons(|x'2a|(F1,F2),Fs),Gs),NF) -> |reduce'ii'in|#(sequent(cons(F1,cons(F2,Fs)),Gs),NF) p4: |reduce'ii'in|#(sequent(cons(iff(A,B),Fs),Gs),NF) -> |reduce'ii'in|#(sequent(cons(|x'2a|(if(A,B),if(B,A)),Fs),Gs),NF) p5: |reduce'ii'in|#(sequent(cons(if(A,B),Fs),Gs),NF) -> |reduce'ii'in|#(sequent(cons(|x'2b|(|x'2d|(B),A),Fs),Gs),NF) and R consists of: r1: |intersect'ii'in|(cons(X,X0),cons(X,X1)) -> |intersect'ii'out|() r2: |intersect'ii'in|(Xs,cons(X0,Ys)) -> |u'1'1|(|intersect'ii'in|(Xs,Ys)) r3: |u'1'1|(|intersect'ii'out|()) -> |intersect'ii'out|() r4: |intersect'ii'in|(cons(X0,Xs),Ys) -> |u'2'1|(|intersect'ii'in|(Xs,Ys)) r5: |u'2'1|(|intersect'ii'out|()) -> |intersect'ii'out|() r6: |reduce'ii'in|(sequent(cons(if(A,B),Fs),Gs),NF) -> |u'3'1|(|reduce'ii'in|(sequent(cons(|x'2b|(|x'2d|(B),A),Fs),Gs),NF)) r7: |u'3'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r8: |reduce'ii'in|(sequent(cons(iff(A,B),Fs),Gs),NF) -> |u'4'1|(|reduce'ii'in|(sequent(cons(|x'2a|(if(A,B),if(B,A)),Fs),Gs),NF)) r9: |u'4'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r10: |reduce'ii'in|(sequent(cons(|x'2a|(F1,F2),Fs),Gs),NF) -> |u'5'1|(|reduce'ii'in|(sequent(cons(F1,cons(F2,Fs)),Gs),NF)) r11: |u'5'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r12: |reduce'ii'in|(sequent(cons(|x'2b|(F1,F2),Fs),Gs),NF) -> |u'6'1|(|reduce'ii'in|(sequent(cons(F1,Fs),Gs),NF),F2,Fs,Gs,NF) r13: |u'6'1|(|reduce'ii'out|(),F2,Fs,Gs,NF) -> |u'6'2|(|reduce'ii'in|(sequent(cons(F2,Fs),Gs),NF)) r14: |u'6'2|(|reduce'ii'out|()) -> |reduce'ii'out|() r15: |reduce'ii'in|(sequent(cons(|x'2d|(F1),Fs),Gs),NF) -> |u'7'1|(|reduce'ii'in|(sequent(Fs,cons(F1,Gs)),NF)) r16: |u'7'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r17: |reduce'ii'in|(sequent(Fs,cons(if(A,B),Gs)),NF) -> |u'8'1|(|reduce'ii'in|(sequent(Fs,cons(|x'2b|(|x'2d|(B),A),Gs)),NF)) r18: |u'8'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r19: |reduce'ii'in|(sequent(Fs,cons(iff(A,B),Gs)),NF) -> |u'9'1|(|reduce'ii'in|(sequent(Fs,cons(|x'2a|(if(A,B),if(B,A)),Gs)),NF)) r20: |u'9'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r21: |reduce'ii'in|(sequent(cons(p(V),Fs),Gs),sequent(Left,Right)) -> |u'10'1|(|reduce'ii'in|(sequent(Fs,Gs),sequent(cons(p(V),Left),Right))) r22: |u'10'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r23: |reduce'ii'in|(sequent(Fs,cons(|x'2b|(G1,G2),Gs)),NF) -> |u'11'1|(|reduce'ii'in|(sequent(Fs,cons(G1,cons(G2,Gs))),NF)) r24: |u'11'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r25: |reduce'ii'in|(sequent(Fs,cons(|x'2a|(G1,G2),Gs)),NF) -> |u'12'1|(|reduce'ii'in|(sequent(Fs,cons(G1,Gs)),NF),Fs,G2,Gs,NF) r26: |u'12'1|(|reduce'ii'out|(),Fs,G2,Gs,NF) -> |u'12'2|(|reduce'ii'in|(sequent(Fs,cons(G2,Gs)),NF)) r27: |u'12'2|(|reduce'ii'out|()) -> |reduce'ii'out|() r28: |reduce'ii'in|(sequent(Fs,cons(|x'2d|(G1),Gs)),NF) -> |u'13'1|(|reduce'ii'in|(sequent(cons(G1,Fs),Gs),NF)) r29: |u'13'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r30: |reduce'ii'in|(sequent(nil(),cons(p(V),Gs)),sequent(Left,Right)) -> |u'14'1|(|reduce'ii'in|(sequent(nil(),Gs),sequent(Left,cons(p(V),Right)))) r31: |u'14'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r32: |reduce'ii'in|(sequent(nil(),nil()),sequent(F1,F2)) -> |u'15'1|(|intersect'ii'in|(F1,F2)) r33: |u'15'1|(|intersect'ii'out|()) -> |reduce'ii'out|() r34: |tautology'i'in|(F) -> |u'16'1|(|reduce'ii'in|(sequent(nil(),cons(F,nil())),sequent(nil(),nil()))) r35: |u'16'1|(|reduce'ii'out|()) -> |tautology'i'out|() The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: |reduce'ii'in|#(sequent(Fs,cons(iff(A,B),Gs)),NF) -> |reduce'ii'in|#(sequent(Fs,cons(|x'2a|(if(A,B),if(B,A)),Gs)),NF) p2: |reduce'ii'in|#(sequent(cons(if(A,B),Fs),Gs),NF) -> |reduce'ii'in|#(sequent(cons(|x'2b|(|x'2d|(B),A),Fs),Gs),NF) p3: |reduce'ii'in|#(sequent(Fs,cons(if(A,B),Gs)),NF) -> |reduce'ii'in|#(sequent(Fs,cons(|x'2b|(|x'2d|(B),A),Gs)),NF) p4: |reduce'ii'in|#(sequent(cons(iff(A,B),Fs),Gs),NF) -> |reduce'ii'in|#(sequent(cons(|x'2a|(if(A,B),if(B,A)),Fs),Gs),NF) p5: |reduce'ii'in|#(sequent(cons(|x'2a|(F1,F2),Fs),Gs),NF) -> |reduce'ii'in|#(sequent(cons(F1,cons(F2,Fs)),Gs),NF) and R consists of: r1: |intersect'ii'in|(cons(X,X0),cons(X,X1)) -> |intersect'ii'out|() r2: |intersect'ii'in|(Xs,cons(X0,Ys)) -> |u'1'1|(|intersect'ii'in|(Xs,Ys)) r3: |u'1'1|(|intersect'ii'out|()) -> |intersect'ii'out|() r4: |intersect'ii'in|(cons(X0,Xs),Ys) -> |u'2'1|(|intersect'ii'in|(Xs,Ys)) r5: |u'2'1|(|intersect'ii'out|()) -> |intersect'ii'out|() r6: |reduce'ii'in|(sequent(cons(if(A,B),Fs),Gs),NF) -> |u'3'1|(|reduce'ii'in|(sequent(cons(|x'2b|(|x'2d|(B),A),Fs),Gs),NF)) r7: |u'3'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r8: |reduce'ii'in|(sequent(cons(iff(A,B),Fs),Gs),NF) -> |u'4'1|(|reduce'ii'in|(sequent(cons(|x'2a|(if(A,B),if(B,A)),Fs),Gs),NF)) r9: |u'4'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r10: |reduce'ii'in|(sequent(cons(|x'2a|(F1,F2),Fs),Gs),NF) -> |u'5'1|(|reduce'ii'in|(sequent(cons(F1,cons(F2,Fs)),Gs),NF)) r11: |u'5'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r12: |reduce'ii'in|(sequent(cons(|x'2b|(F1,F2),Fs),Gs),NF) -> |u'6'1|(|reduce'ii'in|(sequent(cons(F1,Fs),Gs),NF),F2,Fs,Gs,NF) r13: |u'6'1|(|reduce'ii'out|(),F2,Fs,Gs,NF) -> |u'6'2|(|reduce'ii'in|(sequent(cons(F2,Fs),Gs),NF)) r14: |u'6'2|(|reduce'ii'out|()) -> |reduce'ii'out|() r15: |reduce'ii'in|(sequent(cons(|x'2d|(F1),Fs),Gs),NF) -> |u'7'1|(|reduce'ii'in|(sequent(Fs,cons(F1,Gs)),NF)) r16: |u'7'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r17: |reduce'ii'in|(sequent(Fs,cons(if(A,B),Gs)),NF) -> |u'8'1|(|reduce'ii'in|(sequent(Fs,cons(|x'2b|(|x'2d|(B),A),Gs)),NF)) r18: |u'8'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r19: |reduce'ii'in|(sequent(Fs,cons(iff(A,B),Gs)),NF) -> |u'9'1|(|reduce'ii'in|(sequent(Fs,cons(|x'2a|(if(A,B),if(B,A)),Gs)),NF)) r20: |u'9'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r21: |reduce'ii'in|(sequent(cons(p(V),Fs),Gs),sequent(Left,Right)) -> |u'10'1|(|reduce'ii'in|(sequent(Fs,Gs),sequent(cons(p(V),Left),Right))) r22: |u'10'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r23: |reduce'ii'in|(sequent(Fs,cons(|x'2b|(G1,G2),Gs)),NF) -> |u'11'1|(|reduce'ii'in|(sequent(Fs,cons(G1,cons(G2,Gs))),NF)) r24: |u'11'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r25: |reduce'ii'in|(sequent(Fs,cons(|x'2a|(G1,G2),Gs)),NF) -> |u'12'1|(|reduce'ii'in|(sequent(Fs,cons(G1,Gs)),NF),Fs,G2,Gs,NF) r26: |u'12'1|(|reduce'ii'out|(),Fs,G2,Gs,NF) -> |u'12'2|(|reduce'ii'in|(sequent(Fs,cons(G2,Gs)),NF)) r27: |u'12'2|(|reduce'ii'out|()) -> |reduce'ii'out|() r28: |reduce'ii'in|(sequent(Fs,cons(|x'2d|(G1),Gs)),NF) -> |u'13'1|(|reduce'ii'in|(sequent(cons(G1,Fs),Gs),NF)) r29: |u'13'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r30: |reduce'ii'in|(sequent(nil(),cons(p(V),Gs)),sequent(Left,Right)) -> |u'14'1|(|reduce'ii'in|(sequent(nil(),Gs),sequent(Left,cons(p(V),Right)))) r31: |u'14'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r32: |reduce'ii'in|(sequent(nil(),nil()),sequent(F1,F2)) -> |u'15'1|(|intersect'ii'in|(F1,F2)) r33: |u'15'1|(|intersect'ii'out|()) -> |reduce'ii'out|() r34: |tautology'i'in|(F) -> |u'16'1|(|reduce'ii'in|(sequent(nil(),cons(F,nil())),sequent(nil(),nil()))) r35: |u'16'1|(|reduce'ii'out|()) -> |tautology'i'out|() The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: |reduce'ii'in|#_A(x1,x2) = ((0,1),(0,0)) x1 + x2 sequent_A(x1,x2) = ((0,1),(0,0)) x1 + ((0,1),(1,0)) x2 cons_A(x1,x2) = x1 + (1,1) iff_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (3,1) |x'2a|_A(x1,x2) = x1 + (0,1) if_A(x1,x2) = ((1,1),(1,1)) x1 + ((0,1),(1,1)) x2 + (2,1) |x'2b|_A(x1,x2) = ((1,1),(0,1)) x2 + (1,0) |x'2d|_A(x1) = ((0,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: |reduce'ii'in|#_A(x1,x2) = x2 sequent_A(x1,x2) = (1,1) cons_A(x1,x2) = ((0,0),(1,1)) x1 + (1,1) iff_A(x1,x2) = ((0,1),(1,0)) x1 + ((1,1),(1,0)) x2 + (1,1) |x'2a|_A(x1,x2) = ((0,0),(1,1)) x1 + (1,1) if_A(x1,x2) = ((1,1),(1,1)) x1 + (1,1) |x'2b|_A(x1,x2) = ((1,1),(1,0)) x2 + (1,1) |x'2d|_A(x1) = (1,1) The next rules are strictly ordered: p1, p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: |reduce'ii'in|#(sequent(cons(if(A,B),Fs),Gs),NF) -> |reduce'ii'in|#(sequent(cons(|x'2b|(|x'2d|(B),A),Fs),Gs),NF) p2: |reduce'ii'in|#(sequent(cons(iff(A,B),Fs),Gs),NF) -> |reduce'ii'in|#(sequent(cons(|x'2a|(if(A,B),if(B,A)),Fs),Gs),NF) p3: |reduce'ii'in|#(sequent(cons(|x'2a|(F1,F2),Fs),Gs),NF) -> |reduce'ii'in|#(sequent(cons(F1,cons(F2,Fs)),Gs),NF) and R consists of: r1: |intersect'ii'in|(cons(X,X0),cons(X,X1)) -> |intersect'ii'out|() r2: |intersect'ii'in|(Xs,cons(X0,Ys)) -> |u'1'1|(|intersect'ii'in|(Xs,Ys)) r3: |u'1'1|(|intersect'ii'out|()) -> |intersect'ii'out|() r4: |intersect'ii'in|(cons(X0,Xs),Ys) -> |u'2'1|(|intersect'ii'in|(Xs,Ys)) r5: |u'2'1|(|intersect'ii'out|()) -> |intersect'ii'out|() r6: |reduce'ii'in|(sequent(cons(if(A,B),Fs),Gs),NF) -> |u'3'1|(|reduce'ii'in|(sequent(cons(|x'2b|(|x'2d|(B),A),Fs),Gs),NF)) r7: |u'3'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r8: |reduce'ii'in|(sequent(cons(iff(A,B),Fs),Gs),NF) -> |u'4'1|(|reduce'ii'in|(sequent(cons(|x'2a|(if(A,B),if(B,A)),Fs),Gs),NF)) r9: |u'4'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r10: |reduce'ii'in|(sequent(cons(|x'2a|(F1,F2),Fs),Gs),NF) -> |u'5'1|(|reduce'ii'in|(sequent(cons(F1,cons(F2,Fs)),Gs),NF)) r11: |u'5'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r12: |reduce'ii'in|(sequent(cons(|x'2b|(F1,F2),Fs),Gs),NF) -> |u'6'1|(|reduce'ii'in|(sequent(cons(F1,Fs),Gs),NF),F2,Fs,Gs,NF) r13: |u'6'1|(|reduce'ii'out|(),F2,Fs,Gs,NF) -> |u'6'2|(|reduce'ii'in|(sequent(cons(F2,Fs),Gs),NF)) r14: |u'6'2|(|reduce'ii'out|()) -> |reduce'ii'out|() r15: |reduce'ii'in|(sequent(cons(|x'2d|(F1),Fs),Gs),NF) -> |u'7'1|(|reduce'ii'in|(sequent(Fs,cons(F1,Gs)),NF)) r16: |u'7'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r17: |reduce'ii'in|(sequent(Fs,cons(if(A,B),Gs)),NF) -> |u'8'1|(|reduce'ii'in|(sequent(Fs,cons(|x'2b|(|x'2d|(B),A),Gs)),NF)) r18: |u'8'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r19: |reduce'ii'in|(sequent(Fs,cons(iff(A,B),Gs)),NF) -> |u'9'1|(|reduce'ii'in|(sequent(Fs,cons(|x'2a|(if(A,B),if(B,A)),Gs)),NF)) r20: |u'9'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r21: |reduce'ii'in|(sequent(cons(p(V),Fs),Gs),sequent(Left,Right)) -> |u'10'1|(|reduce'ii'in|(sequent(Fs,Gs),sequent(cons(p(V),Left),Right))) r22: |u'10'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r23: |reduce'ii'in|(sequent(Fs,cons(|x'2b|(G1,G2),Gs)),NF) -> |u'11'1|(|reduce'ii'in|(sequent(Fs,cons(G1,cons(G2,Gs))),NF)) r24: |u'11'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r25: |reduce'ii'in|(sequent(Fs,cons(|x'2a|(G1,G2),Gs)),NF) -> |u'12'1|(|reduce'ii'in|(sequent(Fs,cons(G1,Gs)),NF),Fs,G2,Gs,NF) r26: |u'12'1|(|reduce'ii'out|(),Fs,G2,Gs,NF) -> |u'12'2|(|reduce'ii'in|(sequent(Fs,cons(G2,Gs)),NF)) r27: |u'12'2|(|reduce'ii'out|()) -> |reduce'ii'out|() r28: |reduce'ii'in|(sequent(Fs,cons(|x'2d|(G1),Gs)),NF) -> |u'13'1|(|reduce'ii'in|(sequent(cons(G1,Fs),Gs),NF)) r29: |u'13'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r30: |reduce'ii'in|(sequent(nil(),cons(p(V),Gs)),sequent(Left,Right)) -> |u'14'1|(|reduce'ii'in|(sequent(nil(),Gs),sequent(Left,cons(p(V),Right)))) r31: |u'14'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r32: |reduce'ii'in|(sequent(nil(),nil()),sequent(F1,F2)) -> |u'15'1|(|intersect'ii'in|(F1,F2)) r33: |u'15'1|(|intersect'ii'out|()) -> |reduce'ii'out|() r34: |tautology'i'in|(F) -> |u'16'1|(|reduce'ii'in|(sequent(nil(),cons(F,nil())),sequent(nil(),nil()))) r35: |u'16'1|(|reduce'ii'out|()) -> |tautology'i'out|() The estimated dependency graph contains the following SCCs: {p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: |reduce'ii'in|#(sequent(cons(iff(A,B),Fs),Gs),NF) -> |reduce'ii'in|#(sequent(cons(|x'2a|(if(A,B),if(B,A)),Fs),Gs),NF) p2: |reduce'ii'in|#(sequent(cons(|x'2a|(F1,F2),Fs),Gs),NF) -> |reduce'ii'in|#(sequent(cons(F1,cons(F2,Fs)),Gs),NF) and R consists of: r1: |intersect'ii'in|(cons(X,X0),cons(X,X1)) -> |intersect'ii'out|() r2: |intersect'ii'in|(Xs,cons(X0,Ys)) -> |u'1'1|(|intersect'ii'in|(Xs,Ys)) r3: |u'1'1|(|intersect'ii'out|()) -> |intersect'ii'out|() r4: |intersect'ii'in|(cons(X0,Xs),Ys) -> |u'2'1|(|intersect'ii'in|(Xs,Ys)) r5: |u'2'1|(|intersect'ii'out|()) -> |intersect'ii'out|() r6: |reduce'ii'in|(sequent(cons(if(A,B),Fs),Gs),NF) -> |u'3'1|(|reduce'ii'in|(sequent(cons(|x'2b|(|x'2d|(B),A),Fs),Gs),NF)) r7: |u'3'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r8: |reduce'ii'in|(sequent(cons(iff(A,B),Fs),Gs),NF) -> |u'4'1|(|reduce'ii'in|(sequent(cons(|x'2a|(if(A,B),if(B,A)),Fs),Gs),NF)) r9: |u'4'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r10: |reduce'ii'in|(sequent(cons(|x'2a|(F1,F2),Fs),Gs),NF) -> |u'5'1|(|reduce'ii'in|(sequent(cons(F1,cons(F2,Fs)),Gs),NF)) r11: |u'5'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r12: |reduce'ii'in|(sequent(cons(|x'2b|(F1,F2),Fs),Gs),NF) -> |u'6'1|(|reduce'ii'in|(sequent(cons(F1,Fs),Gs),NF),F2,Fs,Gs,NF) r13: |u'6'1|(|reduce'ii'out|(),F2,Fs,Gs,NF) -> |u'6'2|(|reduce'ii'in|(sequent(cons(F2,Fs),Gs),NF)) r14: |u'6'2|(|reduce'ii'out|()) -> |reduce'ii'out|() r15: |reduce'ii'in|(sequent(cons(|x'2d|(F1),Fs),Gs),NF) -> |u'7'1|(|reduce'ii'in|(sequent(Fs,cons(F1,Gs)),NF)) r16: |u'7'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r17: |reduce'ii'in|(sequent(Fs,cons(if(A,B),Gs)),NF) -> |u'8'1|(|reduce'ii'in|(sequent(Fs,cons(|x'2b|(|x'2d|(B),A),Gs)),NF)) r18: |u'8'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r19: |reduce'ii'in|(sequent(Fs,cons(iff(A,B),Gs)),NF) -> |u'9'1|(|reduce'ii'in|(sequent(Fs,cons(|x'2a|(if(A,B),if(B,A)),Gs)),NF)) r20: |u'9'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r21: |reduce'ii'in|(sequent(cons(p(V),Fs),Gs),sequent(Left,Right)) -> |u'10'1|(|reduce'ii'in|(sequent(Fs,Gs),sequent(cons(p(V),Left),Right))) r22: |u'10'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r23: |reduce'ii'in|(sequent(Fs,cons(|x'2b|(G1,G2),Gs)),NF) -> |u'11'1|(|reduce'ii'in|(sequent(Fs,cons(G1,cons(G2,Gs))),NF)) r24: |u'11'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r25: |reduce'ii'in|(sequent(Fs,cons(|x'2a|(G1,G2),Gs)),NF) -> |u'12'1|(|reduce'ii'in|(sequent(Fs,cons(G1,Gs)),NF),Fs,G2,Gs,NF) r26: |u'12'1|(|reduce'ii'out|(),Fs,G2,Gs,NF) -> |u'12'2|(|reduce'ii'in|(sequent(Fs,cons(G2,Gs)),NF)) r27: |u'12'2|(|reduce'ii'out|()) -> |reduce'ii'out|() r28: |reduce'ii'in|(sequent(Fs,cons(|x'2d|(G1),Gs)),NF) -> |u'13'1|(|reduce'ii'in|(sequent(cons(G1,Fs),Gs),NF)) r29: |u'13'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r30: |reduce'ii'in|(sequent(nil(),cons(p(V),Gs)),sequent(Left,Right)) -> |u'14'1|(|reduce'ii'in|(sequent(nil(),Gs),sequent(Left,cons(p(V),Right)))) r31: |u'14'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r32: |reduce'ii'in|(sequent(nil(),nil()),sequent(F1,F2)) -> |u'15'1|(|intersect'ii'in|(F1,F2)) r33: |u'15'1|(|intersect'ii'out|()) -> |reduce'ii'out|() r34: |tautology'i'in|(F) -> |u'16'1|(|reduce'ii'in|(sequent(nil(),cons(F,nil())),sequent(nil(),nil()))) r35: |u'16'1|(|reduce'ii'out|()) -> |tautology'i'out|() The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: |reduce'ii'in|#_A(x1,x2) = x1 + x2 sequent_A(x1,x2) = ((0,1),(0,0)) x1 + x2 + (0,1) cons_A(x1,x2) = x1 + (1,1) iff_A(x1,x2) = ((0,1),(1,1)) x1 + ((1,1),(1,0)) x2 + (1,3) |x'2a|_A(x1,x2) = x1 + (1,1) if_A(x1,x2) = ((0,1),(1,1)) x1 + ((0,1),(1,0)) x2 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: |reduce'ii'in|#_A(x1,x2) = x2 sequent_A(x1,x2) = x2 + (1,1) cons_A(x1,x2) = (1,1) iff_A(x1,x2) = x2 + (1,0) |x'2a|_A(x1,x2) = (1,0) if_A(x1,x2) = (1,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: |intersect'ii'in|#(Xs,cons(X0,Ys)) -> |intersect'ii'in|#(Xs,Ys) p2: |intersect'ii'in|#(cons(X0,Xs),Ys) -> |intersect'ii'in|#(Xs,Ys) and R consists of: r1: |intersect'ii'in|(cons(X,X0),cons(X,X1)) -> |intersect'ii'out|() r2: |intersect'ii'in|(Xs,cons(X0,Ys)) -> |u'1'1|(|intersect'ii'in|(Xs,Ys)) r3: |u'1'1|(|intersect'ii'out|()) -> |intersect'ii'out|() r4: |intersect'ii'in|(cons(X0,Xs),Ys) -> |u'2'1|(|intersect'ii'in|(Xs,Ys)) r5: |u'2'1|(|intersect'ii'out|()) -> |intersect'ii'out|() r6: |reduce'ii'in|(sequent(cons(if(A,B),Fs),Gs),NF) -> |u'3'1|(|reduce'ii'in|(sequent(cons(|x'2b|(|x'2d|(B),A),Fs),Gs),NF)) r7: |u'3'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r8: |reduce'ii'in|(sequent(cons(iff(A,B),Fs),Gs),NF) -> |u'4'1|(|reduce'ii'in|(sequent(cons(|x'2a|(if(A,B),if(B,A)),Fs),Gs),NF)) r9: |u'4'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r10: |reduce'ii'in|(sequent(cons(|x'2a|(F1,F2),Fs),Gs),NF) -> |u'5'1|(|reduce'ii'in|(sequent(cons(F1,cons(F2,Fs)),Gs),NF)) r11: |u'5'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r12: |reduce'ii'in|(sequent(cons(|x'2b|(F1,F2),Fs),Gs),NF) -> |u'6'1|(|reduce'ii'in|(sequent(cons(F1,Fs),Gs),NF),F2,Fs,Gs,NF) r13: |u'6'1|(|reduce'ii'out|(),F2,Fs,Gs,NF) -> |u'6'2|(|reduce'ii'in|(sequent(cons(F2,Fs),Gs),NF)) r14: |u'6'2|(|reduce'ii'out|()) -> |reduce'ii'out|() r15: |reduce'ii'in|(sequent(cons(|x'2d|(F1),Fs),Gs),NF) -> |u'7'1|(|reduce'ii'in|(sequent(Fs,cons(F1,Gs)),NF)) r16: |u'7'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r17: |reduce'ii'in|(sequent(Fs,cons(if(A,B),Gs)),NF) -> |u'8'1|(|reduce'ii'in|(sequent(Fs,cons(|x'2b|(|x'2d|(B),A),Gs)),NF)) r18: |u'8'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r19: |reduce'ii'in|(sequent(Fs,cons(iff(A,B),Gs)),NF) -> |u'9'1|(|reduce'ii'in|(sequent(Fs,cons(|x'2a|(if(A,B),if(B,A)),Gs)),NF)) r20: |u'9'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r21: |reduce'ii'in|(sequent(cons(p(V),Fs),Gs),sequent(Left,Right)) -> |u'10'1|(|reduce'ii'in|(sequent(Fs,Gs),sequent(cons(p(V),Left),Right))) r22: |u'10'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r23: |reduce'ii'in|(sequent(Fs,cons(|x'2b|(G1,G2),Gs)),NF) -> |u'11'1|(|reduce'ii'in|(sequent(Fs,cons(G1,cons(G2,Gs))),NF)) r24: |u'11'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r25: |reduce'ii'in|(sequent(Fs,cons(|x'2a|(G1,G2),Gs)),NF) -> |u'12'1|(|reduce'ii'in|(sequent(Fs,cons(G1,Gs)),NF),Fs,G2,Gs,NF) r26: |u'12'1|(|reduce'ii'out|(),Fs,G2,Gs,NF) -> |u'12'2|(|reduce'ii'in|(sequent(Fs,cons(G2,Gs)),NF)) r27: |u'12'2|(|reduce'ii'out|()) -> |reduce'ii'out|() r28: |reduce'ii'in|(sequent(Fs,cons(|x'2d|(G1),Gs)),NF) -> |u'13'1|(|reduce'ii'in|(sequent(cons(G1,Fs),Gs),NF)) r29: |u'13'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r30: |reduce'ii'in|(sequent(nil(),cons(p(V),Gs)),sequent(Left,Right)) -> |u'14'1|(|reduce'ii'in|(sequent(nil(),Gs),sequent(Left,cons(p(V),Right)))) r31: |u'14'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r32: |reduce'ii'in|(sequent(nil(),nil()),sequent(F1,F2)) -> |u'15'1|(|intersect'ii'in|(F1,F2)) r33: |u'15'1|(|intersect'ii'out|()) -> |reduce'ii'out|() r34: |tautology'i'in|(F) -> |u'16'1|(|reduce'ii'in|(sequent(nil(),cons(F,nil())),sequent(nil(),nil()))) r35: |u'16'1|(|reduce'ii'out|()) -> |tautology'i'out|() The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: |intersect'ii'in|#_A(x1,x2) = ((1,1),(0,1)) x2 cons_A(x1,x2) = ((1,1),(1,1)) x1 + ((0,1),(1,1)) x2 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: |intersect'ii'in|#_A(x1,x2) = ((0,0),(1,1)) x2 cons_A(x1,x2) = ((1,0),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: |intersect'ii'in|#(cons(X0,Xs),Ys) -> |intersect'ii'in|#(Xs,Ys) and R consists of: r1: |intersect'ii'in|(cons(X,X0),cons(X,X1)) -> |intersect'ii'out|() r2: |intersect'ii'in|(Xs,cons(X0,Ys)) -> |u'1'1|(|intersect'ii'in|(Xs,Ys)) r3: |u'1'1|(|intersect'ii'out|()) -> |intersect'ii'out|() r4: |intersect'ii'in|(cons(X0,Xs),Ys) -> |u'2'1|(|intersect'ii'in|(Xs,Ys)) r5: |u'2'1|(|intersect'ii'out|()) -> |intersect'ii'out|() r6: |reduce'ii'in|(sequent(cons(if(A,B),Fs),Gs),NF) -> |u'3'1|(|reduce'ii'in|(sequent(cons(|x'2b|(|x'2d|(B),A),Fs),Gs),NF)) r7: |u'3'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r8: |reduce'ii'in|(sequent(cons(iff(A,B),Fs),Gs),NF) -> |u'4'1|(|reduce'ii'in|(sequent(cons(|x'2a|(if(A,B),if(B,A)),Fs),Gs),NF)) r9: |u'4'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r10: |reduce'ii'in|(sequent(cons(|x'2a|(F1,F2),Fs),Gs),NF) -> |u'5'1|(|reduce'ii'in|(sequent(cons(F1,cons(F2,Fs)),Gs),NF)) r11: |u'5'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r12: |reduce'ii'in|(sequent(cons(|x'2b|(F1,F2),Fs),Gs),NF) -> |u'6'1|(|reduce'ii'in|(sequent(cons(F1,Fs),Gs),NF),F2,Fs,Gs,NF) r13: |u'6'1|(|reduce'ii'out|(),F2,Fs,Gs,NF) -> |u'6'2|(|reduce'ii'in|(sequent(cons(F2,Fs),Gs),NF)) r14: |u'6'2|(|reduce'ii'out|()) -> |reduce'ii'out|() r15: |reduce'ii'in|(sequent(cons(|x'2d|(F1),Fs),Gs),NF) -> |u'7'1|(|reduce'ii'in|(sequent(Fs,cons(F1,Gs)),NF)) r16: |u'7'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r17: |reduce'ii'in|(sequent(Fs,cons(if(A,B),Gs)),NF) -> |u'8'1|(|reduce'ii'in|(sequent(Fs,cons(|x'2b|(|x'2d|(B),A),Gs)),NF)) r18: |u'8'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r19: |reduce'ii'in|(sequent(Fs,cons(iff(A,B),Gs)),NF) -> |u'9'1|(|reduce'ii'in|(sequent(Fs,cons(|x'2a|(if(A,B),if(B,A)),Gs)),NF)) r20: |u'9'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r21: |reduce'ii'in|(sequent(cons(p(V),Fs),Gs),sequent(Left,Right)) -> |u'10'1|(|reduce'ii'in|(sequent(Fs,Gs),sequent(cons(p(V),Left),Right))) r22: |u'10'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r23: |reduce'ii'in|(sequent(Fs,cons(|x'2b|(G1,G2),Gs)),NF) -> |u'11'1|(|reduce'ii'in|(sequent(Fs,cons(G1,cons(G2,Gs))),NF)) r24: |u'11'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r25: |reduce'ii'in|(sequent(Fs,cons(|x'2a|(G1,G2),Gs)),NF) -> |u'12'1|(|reduce'ii'in|(sequent(Fs,cons(G1,Gs)),NF),Fs,G2,Gs,NF) r26: |u'12'1|(|reduce'ii'out|(),Fs,G2,Gs,NF) -> |u'12'2|(|reduce'ii'in|(sequent(Fs,cons(G2,Gs)),NF)) r27: |u'12'2|(|reduce'ii'out|()) -> |reduce'ii'out|() r28: |reduce'ii'in|(sequent(Fs,cons(|x'2d|(G1),Gs)),NF) -> |u'13'1|(|reduce'ii'in|(sequent(cons(G1,Fs),Gs),NF)) r29: |u'13'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r30: |reduce'ii'in|(sequent(nil(),cons(p(V),Gs)),sequent(Left,Right)) -> |u'14'1|(|reduce'ii'in|(sequent(nil(),Gs),sequent(Left,cons(p(V),Right)))) r31: |u'14'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r32: |reduce'ii'in|(sequent(nil(),nil()),sequent(F1,F2)) -> |u'15'1|(|intersect'ii'in|(F1,F2)) r33: |u'15'1|(|intersect'ii'out|()) -> |reduce'ii'out|() r34: |tautology'i'in|(F) -> |u'16'1|(|reduce'ii'in|(sequent(nil(),cons(F,nil())),sequent(nil(),nil()))) r35: |u'16'1|(|reduce'ii'out|()) -> |tautology'i'out|() The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: |intersect'ii'in|#(cons(X0,Xs),Ys) -> |intersect'ii'in|#(Xs,Ys) and R consists of: r1: |intersect'ii'in|(cons(X,X0),cons(X,X1)) -> |intersect'ii'out|() r2: |intersect'ii'in|(Xs,cons(X0,Ys)) -> |u'1'1|(|intersect'ii'in|(Xs,Ys)) r3: |u'1'1|(|intersect'ii'out|()) -> |intersect'ii'out|() r4: |intersect'ii'in|(cons(X0,Xs),Ys) -> |u'2'1|(|intersect'ii'in|(Xs,Ys)) r5: |u'2'1|(|intersect'ii'out|()) -> |intersect'ii'out|() r6: |reduce'ii'in|(sequent(cons(if(A,B),Fs),Gs),NF) -> |u'3'1|(|reduce'ii'in|(sequent(cons(|x'2b|(|x'2d|(B),A),Fs),Gs),NF)) r7: |u'3'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r8: |reduce'ii'in|(sequent(cons(iff(A,B),Fs),Gs),NF) -> |u'4'1|(|reduce'ii'in|(sequent(cons(|x'2a|(if(A,B),if(B,A)),Fs),Gs),NF)) r9: |u'4'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r10: |reduce'ii'in|(sequent(cons(|x'2a|(F1,F2),Fs),Gs),NF) -> |u'5'1|(|reduce'ii'in|(sequent(cons(F1,cons(F2,Fs)),Gs),NF)) r11: |u'5'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r12: |reduce'ii'in|(sequent(cons(|x'2b|(F1,F2),Fs),Gs),NF) -> |u'6'1|(|reduce'ii'in|(sequent(cons(F1,Fs),Gs),NF),F2,Fs,Gs,NF) r13: |u'6'1|(|reduce'ii'out|(),F2,Fs,Gs,NF) -> |u'6'2|(|reduce'ii'in|(sequent(cons(F2,Fs),Gs),NF)) r14: |u'6'2|(|reduce'ii'out|()) -> |reduce'ii'out|() r15: |reduce'ii'in|(sequent(cons(|x'2d|(F1),Fs),Gs),NF) -> |u'7'1|(|reduce'ii'in|(sequent(Fs,cons(F1,Gs)),NF)) r16: |u'7'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r17: |reduce'ii'in|(sequent(Fs,cons(if(A,B),Gs)),NF) -> |u'8'1|(|reduce'ii'in|(sequent(Fs,cons(|x'2b|(|x'2d|(B),A),Gs)),NF)) r18: |u'8'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r19: |reduce'ii'in|(sequent(Fs,cons(iff(A,B),Gs)),NF) -> |u'9'1|(|reduce'ii'in|(sequent(Fs,cons(|x'2a|(if(A,B),if(B,A)),Gs)),NF)) r20: |u'9'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r21: |reduce'ii'in|(sequent(cons(p(V),Fs),Gs),sequent(Left,Right)) -> |u'10'1|(|reduce'ii'in|(sequent(Fs,Gs),sequent(cons(p(V),Left),Right))) r22: |u'10'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r23: |reduce'ii'in|(sequent(Fs,cons(|x'2b|(G1,G2),Gs)),NF) -> |u'11'1|(|reduce'ii'in|(sequent(Fs,cons(G1,cons(G2,Gs))),NF)) r24: |u'11'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r25: |reduce'ii'in|(sequent(Fs,cons(|x'2a|(G1,G2),Gs)),NF) -> |u'12'1|(|reduce'ii'in|(sequent(Fs,cons(G1,Gs)),NF),Fs,G2,Gs,NF) r26: |u'12'1|(|reduce'ii'out|(),Fs,G2,Gs,NF) -> |u'12'2|(|reduce'ii'in|(sequent(Fs,cons(G2,Gs)),NF)) r27: |u'12'2|(|reduce'ii'out|()) -> |reduce'ii'out|() r28: |reduce'ii'in|(sequent(Fs,cons(|x'2d|(G1),Gs)),NF) -> |u'13'1|(|reduce'ii'in|(sequent(cons(G1,Fs),Gs),NF)) r29: |u'13'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r30: |reduce'ii'in|(sequent(nil(),cons(p(V),Gs)),sequent(Left,Right)) -> |u'14'1|(|reduce'ii'in|(sequent(nil(),Gs),sequent(Left,cons(p(V),Right)))) r31: |u'14'1|(|reduce'ii'out|()) -> |reduce'ii'out|() r32: |reduce'ii'in|(sequent(nil(),nil()),sequent(F1,F2)) -> |u'15'1|(|intersect'ii'in|(F1,F2)) r33: |u'15'1|(|intersect'ii'out|()) -> |reduce'ii'out|() r34: |tautology'i'in|(F) -> |u'16'1|(|reduce'ii'in|(sequent(nil(),cons(F,nil())),sequent(nil(),nil()))) r35: |u'16'1|(|reduce'ii'out|()) -> |tautology'i'out|() The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: |intersect'ii'in|#_A(x1,x2) = ((1,1),(1,1)) x1 + x2 cons_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: |intersect'ii'in|#_A(x1,x2) = ((0,1),(1,0)) x1 + x2 cons_A(x1,x2) = ((0,1),(0,1)) x1 + ((0,0),(1,0)) x2 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.