YES We show the termination of the TRS R: not(x) -> xor(x,true()) or(x,y) -> xor(and(x,y),xor(x,y)) implies(x,y) -> xor(and(x,y),xor(x,true())) and(x,true()) -> x and(x,false()) -> false() and(x,x) -> x xor(x,false()) -> x xor(x,x) -> false() and(xor(x,y),z) -> xor(and(x,z),and(y,z)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: not#(x) -> xor#(x,true()) p2: or#(x,y) -> xor#(and(x,y),xor(x,y)) p3: or#(x,y) -> and#(x,y) p4: or#(x,y) -> xor#(x,y) p5: implies#(x,y) -> xor#(and(x,y),xor(x,true())) p6: implies#(x,y) -> and#(x,y) p7: implies#(x,y) -> xor#(x,true()) p8: and#(xor(x,y),z) -> xor#(and(x,z),and(y,z)) p9: and#(xor(x,y),z) -> and#(x,z) p10: and#(xor(x,y),z) -> and#(y,z) and R consists of: r1: not(x) -> xor(x,true()) r2: or(x,y) -> xor(and(x,y),xor(x,y)) r3: implies(x,y) -> xor(and(x,y),xor(x,true())) r4: and(x,true()) -> x r5: and(x,false()) -> false() r6: and(x,x) -> x r7: xor(x,false()) -> x r8: xor(x,x) -> false() r9: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) The estimated dependency graph contains the following SCCs: {p9, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: and#(xor(x,y),z) -> and#(y,z) p2: and#(xor(x,y),z) -> and#(x,z) and R consists of: r1: not(x) -> xor(x,true()) r2: or(x,y) -> xor(and(x,y),xor(x,y)) r3: implies(x,y) -> xor(and(x,y),xor(x,true())) r4: and(x,true()) -> x r5: and(x,false()) -> false() r6: and(x,x) -> x r7: xor(x,false()) -> x r8: xor(x,x) -> false() r9: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: and#_A(x1,x2) = ((1,1),(1,1)) x1 + x2 xor_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: and#_A(x1,x2) = ((1,0),(1,1)) x1 + x2 xor_A(x1,x2) = ((1,1),(0,1)) x1 + ((1,1),(1,1)) x2 + (1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9 We remove them from the problem. Then no dependency pair remains.