YES We show the termination of the TRS R: +(x,|0|()) -> x +(minus(x),x) -> |0|() minus(|0|()) -> |0|() minus(minus(x)) -> x minus(+(x,y)) -> +(minus(y),minus(x)) *(x,|1|()) -> x *(x,|0|()) -> |0|() *(x,+(y,z)) -> +(*(x,y),*(x,z)) *(x,minus(y)) -> minus(*(x,y)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: minus#(+(x,y)) -> +#(minus(y),minus(x)) p2: minus#(+(x,y)) -> minus#(y) p3: minus#(+(x,y)) -> minus#(x) p4: *#(x,+(y,z)) -> +#(*(x,y),*(x,z)) p5: *#(x,+(y,z)) -> *#(x,y) p6: *#(x,+(y,z)) -> *#(x,z) p7: *#(x,minus(y)) -> minus#(*(x,y)) p8: *#(x,minus(y)) -> *#(x,y) and R consists of: r1: +(x,|0|()) -> x r2: +(minus(x),x) -> |0|() r3: minus(|0|()) -> |0|() r4: minus(minus(x)) -> x r5: minus(+(x,y)) -> +(minus(y),minus(x)) r6: *(x,|1|()) -> x r7: *(x,|0|()) -> |0|() r8: *(x,+(y,z)) -> +(*(x,y),*(x,z)) r9: *(x,minus(y)) -> minus(*(x,y)) The estimated dependency graph contains the following SCCs: {p5, p6, p8} {p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: *#(x,minus(y)) -> *#(x,y) p2: *#(x,+(y,z)) -> *#(x,z) p3: *#(x,+(y,z)) -> *#(x,y) and R consists of: r1: +(x,|0|()) -> x r2: +(minus(x),x) -> |0|() r3: minus(|0|()) -> |0|() r4: minus(minus(x)) -> x r5: minus(+(x,y)) -> +(minus(y),minus(x)) r6: *(x,|1|()) -> x r7: *(x,|0|()) -> |0|() r8: *(x,+(y,z)) -> +(*(x,y),*(x,z)) r9: *(x,minus(y)) -> minus(*(x,y)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: *#_A(x1,x2) = x1 + ((1,1),(1,0)) x2 minus_A(x1) = ((1,1),(1,1)) x1 + (1,1) +_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: *#_A(x1,x2) = x1 + ((1,1),(1,1)) x2 minus_A(x1) = ((1,1),(1,1)) x1 + (1,1) +_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) The next rules are strictly ordered: p1, p2, p3 r1, r2, r3, r4, r5, r6, r7, r8, r9 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: minus#(+(x,y)) -> minus#(y) p2: minus#(+(x,y)) -> minus#(x) and R consists of: r1: +(x,|0|()) -> x r2: +(minus(x),x) -> |0|() r3: minus(|0|()) -> |0|() r4: minus(minus(x)) -> x r5: minus(+(x,y)) -> +(minus(y),minus(x)) r6: *(x,|1|()) -> x r7: *(x,|0|()) -> |0|() r8: *(x,+(y,z)) -> +(*(x,y),*(x,z)) r9: *(x,minus(y)) -> minus(*(x,y)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: minus#_A(x1) = ((1,1),(1,1)) x1 +_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: minus#_A(x1) = ((1,1),(1,0)) x1 +_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,0)) x2 + (1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9 We remove them from the problem. Then no dependency pair remains.