YES We show the termination of the TRS R: f(j(x,y),y) -> g(f(x,k(y))) f(x,h1(y,z)) -> h2(|0|(),x,h1(y,z)) g(h2(x,y,h1(z,u))) -> h2(s(x),y,h1(z,u)) h2(x,j(y,h1(z,u)),h1(z,u)) -> h2(s(x),y,h1(s(z),u)) i(f(x,h(y))) -> y i(h2(s(x),y,h1(x,z))) -> z k(h(x)) -> h1(|0|(),x) k(h1(x,y)) -> h1(s(x),y) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(j(x,y),y) -> g#(f(x,k(y))) p2: f#(j(x,y),y) -> f#(x,k(y)) p3: f#(j(x,y),y) -> k#(y) p4: f#(x,h1(y,z)) -> h2#(|0|(),x,h1(y,z)) p5: g#(h2(x,y,h1(z,u))) -> h2#(s(x),y,h1(z,u)) p6: h2#(x,j(y,h1(z,u)),h1(z,u)) -> h2#(s(x),y,h1(s(z),u)) and R consists of: r1: f(j(x,y),y) -> g(f(x,k(y))) r2: f(x,h1(y,z)) -> h2(|0|(),x,h1(y,z)) r3: g(h2(x,y,h1(z,u))) -> h2(s(x),y,h1(z,u)) r4: h2(x,j(y,h1(z,u)),h1(z,u)) -> h2(s(x),y,h1(s(z),u)) r5: i(f(x,h(y))) -> y r6: i(h2(s(x),y,h1(x,z))) -> z r7: k(h(x)) -> h1(|0|(),x) r8: k(h1(x,y)) -> h1(s(x),y) The estimated dependency graph contains the following SCCs: {p2} {p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(j(x,y),y) -> f#(x,k(y)) and R consists of: r1: f(j(x,y),y) -> g(f(x,k(y))) r2: f(x,h1(y,z)) -> h2(|0|(),x,h1(y,z)) r3: g(h2(x,y,h1(z,u))) -> h2(s(x),y,h1(z,u)) r4: h2(x,j(y,h1(z,u)),h1(z,u)) -> h2(s(x),y,h1(s(z),u)) r5: i(f(x,h(y))) -> y r6: i(h2(s(x),y,h1(x,z))) -> z r7: k(h(x)) -> h1(|0|(),x) r8: k(h1(x,y)) -> h1(s(x),y) The set of usable rules consists of r7, r8 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,0)) x2 j_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,0),(1,1)) x2 + (3,1) k_A(x1) = ((1,0),(1,1)) x1 + (2,1) h_A(x1) = ((1,1),(1,1)) x1 + (1,1) h1_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) |0|_A() = (1,1) s_A(x1) = ((1,0),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2) = x1 + x2 j_A(x1,x2) = ((0,0),(1,0)) x1 + x2 + (1,1) k_A(x1) = ((0,1),(1,1)) x1 + (1,1) h_A(x1) = ((1,1),(1,1)) x1 + (1,1) h1_A(x1,x2) = ((0,0),(1,0)) x1 + ((1,1),(0,1)) x2 + (3,3) |0|_A() = (1,1) s_A(x1) = ((1,1),(0,0)) x1 + (5,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: h2#(x,j(y,h1(z,u)),h1(z,u)) -> h2#(s(x),y,h1(s(z),u)) and R consists of: r1: f(j(x,y),y) -> g(f(x,k(y))) r2: f(x,h1(y,z)) -> h2(|0|(),x,h1(y,z)) r3: g(h2(x,y,h1(z,u))) -> h2(s(x),y,h1(z,u)) r4: h2(x,j(y,h1(z,u)),h1(z,u)) -> h2(s(x),y,h1(s(z),u)) r5: i(f(x,h(y))) -> y r6: i(h2(s(x),y,h1(x,z))) -> z r7: k(h(x)) -> h1(|0|(),x) r8: k(h1(x,y)) -> h1(s(x),y) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: h2#_A(x1,x2,x3) = x1 + ((0,1),(1,1)) x2 j_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,0),(1,0)) x2 h1_A(x1,x2) = ((0,1),(0,1)) x1 + ((1,1),(1,1)) x2 + (1,1) s_A(x1) = ((0,1),(0,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: h2#_A(x1,x2,x3) = (0,0) j_A(x1,x2) = ((0,1),(0,0)) x2 + (0,1) h1_A(x1,x2) = x2 + (1,1) s_A(x1) = (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.