YES We show the termination of the TRS R: rev(nil()) -> nil() rev(.(x,y)) -> ++(rev(y),.(x,nil())) car(.(x,y)) -> x cdr(.(x,y)) -> y null(nil()) -> true() null(.(x,y)) -> false() ++(nil(),y) -> y ++(.(x,y),z) -> .(x,++(y,z)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: rev#(.(x,y)) -> ++#(rev(y),.(x,nil())) p2: rev#(.(x,y)) -> rev#(y) p3: ++#(.(x,y),z) -> ++#(y,z) and R consists of: r1: rev(nil()) -> nil() r2: rev(.(x,y)) -> ++(rev(y),.(x,nil())) r3: car(.(x,y)) -> x r4: cdr(.(x,y)) -> y r5: null(nil()) -> true() r6: null(.(x,y)) -> false() r7: ++(nil(),y) -> y r8: ++(.(x,y),z) -> .(x,++(y,z)) The estimated dependency graph contains the following SCCs: {p2} {p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: rev#(.(x,y)) -> rev#(y) and R consists of: r1: rev(nil()) -> nil() r2: rev(.(x,y)) -> ++(rev(y),.(x,nil())) r3: car(.(x,y)) -> x r4: cdr(.(x,y)) -> y r5: null(nil()) -> true() r6: null(.(x,y)) -> false() r7: ++(nil(),y) -> y r8: ++(.(x,y),z) -> .(x,++(y,z)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: rev#_A(x1) = ((1,1),(1,1)) x1 ._A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: rev#_A(x1) = ((1,1),(1,1)) x1 ._A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ++#(.(x,y),z) -> ++#(y,z) and R consists of: r1: rev(nil()) -> nil() r2: rev(.(x,y)) -> ++(rev(y),.(x,nil())) r3: car(.(x,y)) -> x r4: cdr(.(x,y)) -> y r5: null(nil()) -> true() r6: null(.(x,y)) -> false() r7: ++(nil(),y) -> y r8: ++(.(x,y),z) -> .(x,++(y,z)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: ++#_A(x1,x2) = ((1,1),(1,1)) x1 + x2 ._A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: ++#_A(x1,x2) = ((0,1),(1,0)) x1 + x2 ._A(x1,x2) = ((0,1),(0,1)) x1 + ((0,0),(1,0)) x2 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.