YES

We show the termination of the TRS R:

  f(a(),a()) -> f(a(),b())
  f(a(),b()) -> f(s(a()),c())
  f(s(X),c()) -> f(X,c())
  f(c(),c()) -> f(a(),a())

-- SCC decomposition.

Consider the dependency pair problem (P, R), where P consists of

p1: f#(a(),a()) -> f#(a(),b())
p2: f#(a(),b()) -> f#(s(a()),c())
p3: f#(s(X),c()) -> f#(X,c())
p4: f#(c(),c()) -> f#(a(),a())

and R consists of:

r1: f(a(),a()) -> f(a(),b())
r2: f(a(),b()) -> f(s(a()),c())
r3: f(s(X),c()) -> f(X,c())
r4: f(c(),c()) -> f(a(),a())

The estimated dependency graph contains the following SCCs:

  {p1, p2, p3, p4}


-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: f#(a(),a()) -> f#(a(),b())
p2: f#(a(),b()) -> f#(s(a()),c())
p3: f#(s(X),c()) -> f#(X,c())
p4: f#(c(),c()) -> f#(a(),a())

and R consists of:

r1: f(a(),a()) -> f(a(),b())
r2: f(a(),b()) -> f(s(a()),c())
r3: f(s(X),c()) -> f(X,c())
r4: f(c(),c()) -> f(a(),a())

The set of usable rules consists of

  (no rules)

Take the reduction pair:

  lexicographic combination of reduction pairs:
  
    1. matrix interpretations:
    
      carrier: N^2
      order: standard order
      interpretations:
        f#_A(x1,x2) = ((1,1),(0,0)) x1 + ((0,1),(0,0)) x2
        a_A() = (1,5)
        b_A() = (1,4)
        s_A(x1) = ((0,0),(1,1)) x1 + (1,1)
        c_A() = (10,1)
    
    2. matrix interpretations:
    
      carrier: N^2
      order: standard order
      interpretations:
        f#_A(x1,x2) = ((1,1),(0,0)) x1
        a_A() = (1,1)
        b_A() = (1,1)
        s_A(x1) = (2,1)
        c_A() = (1,2)
    

The next rules are strictly ordered:

  p1, p2, p3, p4

We remove them from the problem.  Then no dependency pair remains.