YES We show the termination of the TRS R: ackin(s(X),s(Y)) -> u21(ackin(s(X),Y),X) u21(ackout(X),Y) -> u22(ackin(Y,X)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: ackin#(s(X),s(Y)) -> u21#(ackin(s(X),Y),X) p2: ackin#(s(X),s(Y)) -> ackin#(s(X),Y) p3: u21#(ackout(X),Y) -> ackin#(Y,X) and R consists of: r1: ackin(s(X),s(Y)) -> u21(ackin(s(X),Y),X) r2: u21(ackout(X),Y) -> u22(ackin(Y,X)) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ackin#(s(X),s(Y)) -> u21#(ackin(s(X),Y),X) p2: u21#(ackout(X),Y) -> ackin#(Y,X) p3: ackin#(s(X),s(Y)) -> ackin#(s(X),Y) and R consists of: r1: ackin(s(X),s(Y)) -> u21(ackin(s(X),Y),X) r2: u21(ackout(X),Y) -> u22(ackin(Y,X)) The set of usable rules consists of r1, r2 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: ackin#_A(x1,x2) = x1 + ((1,0),(1,0)) x2 s_A(x1) = ((1,1),(0,1)) x1 + (2,1) u21#_A(x1,x2) = ((0,1),(0,1)) x1 + ((1,1),(0,0)) x2 + (1,0) ackin_A(x1,x2) = x1 + ((1,0),(1,0)) x2 + (1,1) ackout_A(x1) = ((0,1),(1,1)) x1 + (1,0) u21_A(x1,x2) = x2 + (1,0) u22_A(x1) = (0,0) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: ackin#_A(x1,x2) = ((1,0),(1,1)) x1 + ((0,1),(0,1)) x2 + (1,0) s_A(x1) = ((0,1),(0,1)) x1 + (1,1) u21#_A(x1,x2) = ((1,0),(1,0)) x2 + (0,4) ackin_A(x1,x2) = ((1,1),(0,0)) x1 + (0,1) ackout_A(x1) = (1,1) u21_A(x1,x2) = ((0,1),(0,1)) x2 + (0,2) u22_A(x1) = (1,3) The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains.