YES We show the termination of the TRS R: lt(|0|(),s(X)) -> true() lt(s(X),|0|()) -> false() lt(s(X),s(Y)) -> lt(X,Y) append(nil(),Y) -> Y append(add(N,X),Y) -> add(N,append(X,Y)) split(N,nil()) -> pair(nil(),nil()) split(N,add(M,Y)) -> f_1(split(N,Y),N,M,Y) f_1(pair(X,Z),N,M,Y) -> f_2(lt(N,M),N,M,Y,X,Z) f_2(true(),N,M,Y,X,Z) -> pair(X,add(M,Z)) f_2(false(),N,M,Y,X,Z) -> pair(add(M,X),Z) qsort(nil()) -> nil() qsort(add(N,X)) -> f_3(split(N,X),N,X) f_3(pair(Y,Z),N,X) -> append(qsort(Y),add(X,qsort(Z))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: lt#(s(X),s(Y)) -> lt#(X,Y) p2: append#(add(N,X),Y) -> append#(X,Y) p3: split#(N,add(M,Y)) -> f_1#(split(N,Y),N,M,Y) p4: split#(N,add(M,Y)) -> split#(N,Y) p5: f_1#(pair(X,Z),N,M,Y) -> f_2#(lt(N,M),N,M,Y,X,Z) p6: f_1#(pair(X,Z),N,M,Y) -> lt#(N,M) p7: qsort#(add(N,X)) -> f_3#(split(N,X),N,X) p8: qsort#(add(N,X)) -> split#(N,X) p9: f_3#(pair(Y,Z),N,X) -> append#(qsort(Y),add(X,qsort(Z))) p10: f_3#(pair(Y,Z),N,X) -> qsort#(Y) p11: f_3#(pair(Y,Z),N,X) -> qsort#(Z) and R consists of: r1: lt(|0|(),s(X)) -> true() r2: lt(s(X),|0|()) -> false() r3: lt(s(X),s(Y)) -> lt(X,Y) r4: append(nil(),Y) -> Y r5: append(add(N,X),Y) -> add(N,append(X,Y)) r6: split(N,nil()) -> pair(nil(),nil()) r7: split(N,add(M,Y)) -> f_1(split(N,Y),N,M,Y) r8: f_1(pair(X,Z),N,M,Y) -> f_2(lt(N,M),N,M,Y,X,Z) r9: f_2(true(),N,M,Y,X,Z) -> pair(X,add(M,Z)) r10: f_2(false(),N,M,Y,X,Z) -> pair(add(M,X),Z) r11: qsort(nil()) -> nil() r12: qsort(add(N,X)) -> f_3(split(N,X),N,X) r13: f_3(pair(Y,Z),N,X) -> append(qsort(Y),add(X,qsort(Z))) The estimated dependency graph contains the following SCCs: {p7, p10, p11} {p4} {p1} {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f_3#(pair(Y,Z),N,X) -> qsort#(Z) p2: qsort#(add(N,X)) -> f_3#(split(N,X),N,X) p3: f_3#(pair(Y,Z),N,X) -> qsort#(Y) and R consists of: r1: lt(|0|(),s(X)) -> true() r2: lt(s(X),|0|()) -> false() r3: lt(s(X),s(Y)) -> lt(X,Y) r4: append(nil(),Y) -> Y r5: append(add(N,X),Y) -> add(N,append(X,Y)) r6: split(N,nil()) -> pair(nil(),nil()) r7: split(N,add(M,Y)) -> f_1(split(N,Y),N,M,Y) r8: f_1(pair(X,Z),N,M,Y) -> f_2(lt(N,M),N,M,Y,X,Z) r9: f_2(true(),N,M,Y,X,Z) -> pair(X,add(M,Z)) r10: f_2(false(),N,M,Y,X,Z) -> pair(add(M,X),Z) r11: qsort(nil()) -> nil() r12: qsort(add(N,X)) -> f_3(split(N,X),N,X) r13: f_3(pair(Y,Z),N,X) -> append(qsort(Y),add(X,qsort(Z))) The set of usable rules consists of r1, r2, r3, r6, r7, r8, r9, r10 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: f_3#_A(x1,x2,x3) = x1 + ((0,1),(0,0)) x2 pair_A(x1,x2) = x1 + x2 + (1,2) qsort#_A(x1) = x1 add_A(x1,x2) = ((0,1),(0,0)) x1 + ((1,1),(1,1)) x2 + (4,2) split_A(x1,x2) = ((1,1),(1,1)) x2 + (3,1) lt_A(x1,x2) = ((0,1),(1,0)) x2 + (1,1) |0|_A() = (1,0) s_A(x1) = ((1,1),(0,1)) x1 + (1,1) true_A() = (0,1) false_A() = (0,0) f_2_A(x1,x2,x3,x4,x5,x6) = ((0,0),(1,0)) x1 + ((0,1),(0,0)) x3 + ((1,1),(1,1)) x5 + ((1,1),(1,1)) x6 + (6,4) f_1_A(x1,x2,x3,x4) = ((1,1),(1,1)) x1 + ((0,1),(0,1)) x3 + (4,2) nil_A() = (1,0) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: f_3#_A(x1,x2,x3) = (4,5) pair_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,0),(1,0)) x2 + (1,1) qsort#_A(x1) = ((1,0),(1,1)) x1 add_A(x1,x2) = ((1,1),(1,1)) x2 + (3,1) split_A(x1,x2) = x2 + (2,1) lt_A(x1,x2) = (1,1) |0|_A() = (1,1) s_A(x1) = (1,1) true_A() = (2,2) false_A() = (2,2) f_2_A(x1,x2,x3,x4,x5,x6) = (6,3) f_1_A(x1,x2,x3,x4) = ((1,1),(1,1)) x1 + (3,0) nil_A() = (1,1) The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: split#(N,add(M,Y)) -> split#(N,Y) and R consists of: r1: lt(|0|(),s(X)) -> true() r2: lt(s(X),|0|()) -> false() r3: lt(s(X),s(Y)) -> lt(X,Y) r4: append(nil(),Y) -> Y r5: append(add(N,X),Y) -> add(N,append(X,Y)) r6: split(N,nil()) -> pair(nil(),nil()) r7: split(N,add(M,Y)) -> f_1(split(N,Y),N,M,Y) r8: f_1(pair(X,Z),N,M,Y) -> f_2(lt(N,M),N,M,Y,X,Z) r9: f_2(true(),N,M,Y,X,Z) -> pair(X,add(M,Z)) r10: f_2(false(),N,M,Y,X,Z) -> pair(add(M,X),Z) r11: qsort(nil()) -> nil() r12: qsort(add(N,X)) -> f_3(split(N,X),N,X) r13: f_3(pair(Y,Z),N,X) -> append(qsort(Y),add(X,qsort(Z))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: split#_A(x1,x2) = x1 + ((1,1),(1,1)) x2 add_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: split#_A(x1,x2) = x1 + ((0,1),(1,0)) x2 add_A(x1,x2) = ((0,1),(0,1)) x1 + ((0,0),(1,0)) x2 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: lt#(s(X),s(Y)) -> lt#(X,Y) and R consists of: r1: lt(|0|(),s(X)) -> true() r2: lt(s(X),|0|()) -> false() r3: lt(s(X),s(Y)) -> lt(X,Y) r4: append(nil(),Y) -> Y r5: append(add(N,X),Y) -> add(N,append(X,Y)) r6: split(N,nil()) -> pair(nil(),nil()) r7: split(N,add(M,Y)) -> f_1(split(N,Y),N,M,Y) r8: f_1(pair(X,Z),N,M,Y) -> f_2(lt(N,M),N,M,Y,X,Z) r9: f_2(true(),N,M,Y,X,Z) -> pair(X,add(M,Z)) r10: f_2(false(),N,M,Y,X,Z) -> pair(add(M,X),Z) r11: qsort(nil()) -> nil() r12: qsort(add(N,X)) -> f_3(split(N,X),N,X) r13: f_3(pair(Y,Z),N,X) -> append(qsort(Y),add(X,qsort(Z))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: lt#_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(0,0)) x2 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: lt#_A(x1,x2) = ((0,0),(1,1)) x1 + ((0,0),(1,1)) x2 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: append#(add(N,X),Y) -> append#(X,Y) and R consists of: r1: lt(|0|(),s(X)) -> true() r2: lt(s(X),|0|()) -> false() r3: lt(s(X),s(Y)) -> lt(X,Y) r4: append(nil(),Y) -> Y r5: append(add(N,X),Y) -> add(N,append(X,Y)) r6: split(N,nil()) -> pair(nil(),nil()) r7: split(N,add(M,Y)) -> f_1(split(N,Y),N,M,Y) r8: f_1(pair(X,Z),N,M,Y) -> f_2(lt(N,M),N,M,Y,X,Z) r9: f_2(true(),N,M,Y,X,Z) -> pair(X,add(M,Z)) r10: f_2(false(),N,M,Y,X,Z) -> pair(add(M,X),Z) r11: qsort(nil()) -> nil() r12: qsort(add(N,X)) -> f_3(split(N,X),N,X) r13: f_3(pair(Y,Z),N,X) -> append(qsort(Y),add(X,qsort(Z))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: append#_A(x1,x2) = ((1,1),(1,1)) x1 + x2 add_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: append#_A(x1,x2) = ((0,1),(1,0)) x1 + x2 add_A(x1,x2) = ((0,1),(0,1)) x1 + ((0,0),(1,0)) x2 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.