YES We show the termination of the TRS R: f(a(),f(f(a(),a()),x)) -> f(f(a(),a()),f(a(),f(a(),x))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(a(),f(f(a(),a()),x)) -> f#(f(a(),a()),f(a(),f(a(),x))) p2: f#(a(),f(f(a(),a()),x)) -> f#(a(),f(a(),x)) p3: f#(a(),f(f(a(),a()),x)) -> f#(a(),x) and R consists of: r1: f(a(),f(f(a(),a()),x)) -> f(f(a(),a()),f(a(),f(a(),x))) The estimated dependency graph contains the following SCCs: {p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(a(),f(f(a(),a()),x)) -> f#(a(),f(a(),x)) p2: f#(a(),f(f(a(),a()),x)) -> f#(a(),x) and R consists of: r1: f(a(),f(f(a(),a()),x)) -> f(f(a(),a()),f(a(),f(a(),x))) The set of usable rules consists of r1 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2) = x1 + ((0,1),(0,1)) x2 a_A() = (0,1) f_A(x1,x2) = ((0,1),(1,0)) x1 + x2 2. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2) = x1 a_A() = (1,1) f_A(x1,x2) = (1,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.