YES We show the termination of the TRS R: .(.(x,y),z) -> .(x,.(y,z)) a(f(x)) -> f(a(x)) a(.(x,y)) -> .(a(x),y) a(b1(x)) -> b1(a(x)) f(b(x)) -> b(f(x)) .(b(x),y) -> b(.(x,y)) b1(b(x)) -> b(b(x)) a(f(.(|0|(),x))) -> b1(.(f(.(|0|(),x)),.(|0|(),f(x)))) a(f(|0|())) -> b1(.(f(|0|()),|0|())) f(.(|0|(),x)) -> b(.(|0|(),f(x))) f(|0|()) -> b(|0|()) c(b(x)) -> c(a(x)) a(b(x)) -> b(a(x)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: .#(.(x,y),z) -> .#(x,.(y,z)) p2: .#(.(x,y),z) -> .#(y,z) p3: a#(f(x)) -> f#(a(x)) p4: a#(f(x)) -> a#(x) p5: a#(.(x,y)) -> .#(a(x),y) p6: a#(.(x,y)) -> a#(x) p7: a#(b1(x)) -> b1#(a(x)) p8: a#(b1(x)) -> a#(x) p9: f#(b(x)) -> f#(x) p10: .#(b(x),y) -> .#(x,y) p11: a#(f(.(|0|(),x))) -> b1#(.(f(.(|0|(),x)),.(|0|(),f(x)))) p12: a#(f(.(|0|(),x))) -> .#(f(.(|0|(),x)),.(|0|(),f(x))) p13: a#(f(.(|0|(),x))) -> .#(|0|(),f(x)) p14: a#(f(.(|0|(),x))) -> f#(x) p15: a#(f(|0|())) -> b1#(.(f(|0|()),|0|())) p16: a#(f(|0|())) -> .#(f(|0|()),|0|()) p17: f#(.(|0|(),x)) -> .#(|0|(),f(x)) p18: f#(.(|0|(),x)) -> f#(x) p19: c#(b(x)) -> c#(a(x)) p20: c#(b(x)) -> a#(x) p21: a#(b(x)) -> a#(x) and R consists of: r1: .(.(x,y),z) -> .(x,.(y,z)) r2: a(f(x)) -> f(a(x)) r3: a(.(x,y)) -> .(a(x),y) r4: a(b1(x)) -> b1(a(x)) r5: f(b(x)) -> b(f(x)) r6: .(b(x),y) -> b(.(x,y)) r7: b1(b(x)) -> b(b(x)) r8: a(f(.(|0|(),x))) -> b1(.(f(.(|0|(),x)),.(|0|(),f(x)))) r9: a(f(|0|())) -> b1(.(f(|0|()),|0|())) r10: f(.(|0|(),x)) -> b(.(|0|(),f(x))) r11: f(|0|()) -> b(|0|()) r12: c(b(x)) -> c(a(x)) r13: a(b(x)) -> b(a(x)) The estimated dependency graph contains the following SCCs: {p19} {p4, p6, p8, p21} {p1, p2, p10} {p9, p18} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: c#(b(x)) -> c#(a(x)) and R consists of: r1: .(.(x,y),z) -> .(x,.(y,z)) r2: a(f(x)) -> f(a(x)) r3: a(.(x,y)) -> .(a(x),y) r4: a(b1(x)) -> b1(a(x)) r5: f(b(x)) -> b(f(x)) r6: .(b(x),y) -> b(.(x,y)) r7: b1(b(x)) -> b(b(x)) r8: a(f(.(|0|(),x))) -> b1(.(f(.(|0|(),x)),.(|0|(),f(x)))) r9: a(f(|0|())) -> b1(.(f(|0|()),|0|())) r10: f(.(|0|(),x)) -> b(.(|0|(),f(x))) r11: f(|0|()) -> b(|0|()) r12: c(b(x)) -> c(a(x)) r13: a(b(x)) -> b(a(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r13 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: c#_A(x1) = ((1,1),(1,0)) x1 b_A(x1) = ((1,1),(0,0)) x1 + (1,1) a_A(x1) = ((1,1),(0,0)) x1 + (1,1) ._A(x1,x2) = x1 f_A(x1) = ((1,1),(0,0)) x1 + (2,1) b1_A(x1) = ((1,1),(0,0)) x1 + (1,1) |0|_A() = (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: c#_A(x1) = ((1,1),(0,0)) x1 b_A(x1) = x1 + (1,1) a_A(x1) = ((0,1),(1,0)) x1 ._A(x1,x2) = x1 f_A(x1) = x1 b1_A(x1) = ((1,1),(1,1)) x1 |0|_A() = (0,0) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a#(b(x)) -> a#(x) p2: a#(b1(x)) -> a#(x) p3: a#(.(x,y)) -> a#(x) p4: a#(f(x)) -> a#(x) and R consists of: r1: .(.(x,y),z) -> .(x,.(y,z)) r2: a(f(x)) -> f(a(x)) r3: a(.(x,y)) -> .(a(x),y) r4: a(b1(x)) -> b1(a(x)) r5: f(b(x)) -> b(f(x)) r6: .(b(x),y) -> b(.(x,y)) r7: b1(b(x)) -> b(b(x)) r8: a(f(.(|0|(),x))) -> b1(.(f(.(|0|(),x)),.(|0|(),f(x)))) r9: a(f(|0|())) -> b1(.(f(|0|()),|0|())) r10: f(.(|0|(),x)) -> b(.(|0|(),f(x))) r11: f(|0|()) -> b(|0|()) r12: c(b(x)) -> c(a(x)) r13: a(b(x)) -> b(a(x)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: a#_A(x1) = ((1,1),(0,1)) x1 b_A(x1) = ((1,1),(1,1)) x1 + (1,1) b1_A(x1) = ((1,1),(1,1)) x1 + (1,1) ._A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) f_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: a#_A(x1) = ((0,1),(1,1)) x1 b_A(x1) = ((1,1),(1,1)) x1 + (1,1) b1_A(x1) = ((1,1),(1,1)) x1 + (1,1) ._A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) f_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1, p2, p3, p4 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: .#(.(x,y),z) -> .#(x,.(y,z)) p2: .#(b(x),y) -> .#(x,y) p3: .#(.(x,y),z) -> .#(y,z) and R consists of: r1: .(.(x,y),z) -> .(x,.(y,z)) r2: a(f(x)) -> f(a(x)) r3: a(.(x,y)) -> .(a(x),y) r4: a(b1(x)) -> b1(a(x)) r5: f(b(x)) -> b(f(x)) r6: .(b(x),y) -> b(.(x,y)) r7: b1(b(x)) -> b(b(x)) r8: a(f(.(|0|(),x))) -> b1(.(f(.(|0|(),x)),.(|0|(),f(x)))) r9: a(f(|0|())) -> b1(.(f(|0|()),|0|())) r10: f(.(|0|(),x)) -> b(.(|0|(),f(x))) r11: f(|0|()) -> b(|0|()) r12: c(b(x)) -> c(a(x)) r13: a(b(x)) -> b(a(x)) The set of usable rules consists of r1, r6 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: .#_A(x1,x2) = ((1,0),(1,0)) x1 + ((0,0),(1,0)) x2 ._A(x1,x2) = x1 + x2 + (1,0) b_A(x1) = ((1,1),(0,0)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: .#_A(x1,x2) = ((0,1),(0,1)) x1 ._A(x1,x2) = ((0,1),(0,1)) x1 + x2 + (1,1) b_A(x1) = x1 + (1,2) The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(b(x)) -> f#(x) p2: f#(.(|0|(),x)) -> f#(x) and R consists of: r1: .(.(x,y),z) -> .(x,.(y,z)) r2: a(f(x)) -> f(a(x)) r3: a(.(x,y)) -> .(a(x),y) r4: a(b1(x)) -> b1(a(x)) r5: f(b(x)) -> b(f(x)) r6: .(b(x),y) -> b(.(x,y)) r7: b1(b(x)) -> b(b(x)) r8: a(f(.(|0|(),x))) -> b1(.(f(.(|0|(),x)),.(|0|(),f(x)))) r9: a(f(|0|())) -> b1(.(f(|0|()),|0|())) r10: f(.(|0|(),x)) -> b(.(|0|(),f(x))) r11: f(|0|()) -> b(|0|()) r12: c(b(x)) -> c(a(x)) r13: a(b(x)) -> b(a(x)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1) = ((0,1),(1,1)) x1 b_A(x1) = ((1,1),(1,1)) x1 + (1,1) ._A(x1,x2) = x1 + ((0,1),(1,1)) x2 + (0,1) |0|_A() = (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1) = (0,0) b_A(x1) = (1,1) ._A(x1,x2) = x1 + (0,1) |0|_A() = (1,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.