YES We show the termination of the TRS R: -(x,|0|()) -> x -(|0|(),s(y)) -> |0|() -(s(x),s(y)) -> -(x,y) lt(x,|0|()) -> false() lt(|0|(),s(y)) -> true() lt(s(x),s(y)) -> lt(x,y) if(true(),x,y) -> x if(false(),x,y) -> y div(x,|0|()) -> |0|() div(|0|(),y) -> |0|() div(s(x),s(y)) -> if(lt(x,y),|0|(),s(div(-(x,y),s(y)))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: -#(s(x),s(y)) -> -#(x,y) p2: lt#(s(x),s(y)) -> lt#(x,y) p3: div#(s(x),s(y)) -> if#(lt(x,y),|0|(),s(div(-(x,y),s(y)))) p4: div#(s(x),s(y)) -> lt#(x,y) p5: div#(s(x),s(y)) -> div#(-(x,y),s(y)) p6: div#(s(x),s(y)) -> -#(x,y) and R consists of: r1: -(x,|0|()) -> x r2: -(|0|(),s(y)) -> |0|() r3: -(s(x),s(y)) -> -(x,y) r4: lt(x,|0|()) -> false() r5: lt(|0|(),s(y)) -> true() r6: lt(s(x),s(y)) -> lt(x,y) r7: if(true(),x,y) -> x r8: if(false(),x,y) -> y r9: div(x,|0|()) -> |0|() r10: div(|0|(),y) -> |0|() r11: div(s(x),s(y)) -> if(lt(x,y),|0|(),s(div(-(x,y),s(y)))) The estimated dependency graph contains the following SCCs: {p5} {p1} {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: div#(s(x),s(y)) -> div#(-(x,y),s(y)) and R consists of: r1: -(x,|0|()) -> x r2: -(|0|(),s(y)) -> |0|() r3: -(s(x),s(y)) -> -(x,y) r4: lt(x,|0|()) -> false() r5: lt(|0|(),s(y)) -> true() r6: lt(s(x),s(y)) -> lt(x,y) r7: if(true(),x,y) -> x r8: if(false(),x,y) -> y r9: div(x,|0|()) -> |0|() r10: div(|0|(),y) -> |0|() r11: div(s(x),s(y)) -> if(lt(x,y),|0|(),s(div(-(x,y),s(y)))) The set of usable rules consists of r1, r2, r3 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: div#_A(x1,x2) = x1 + x2 s_A(x1) = x1 + (2,1) -_A(x1,x2) = ((1,0),(1,1)) x1 + (1,1) |0|_A() = (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: div#_A(x1,x2) = x2 s_A(x1) = ((0,0),(1,1)) x1 + (1,1) -_A(x1,x2) = ((0,1),(0,0)) x1 + (0,1) |0|_A() = (3,2) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: -#(s(x),s(y)) -> -#(x,y) and R consists of: r1: -(x,|0|()) -> x r2: -(|0|(),s(y)) -> |0|() r3: -(s(x),s(y)) -> -(x,y) r4: lt(x,|0|()) -> false() r5: lt(|0|(),s(y)) -> true() r6: lt(s(x),s(y)) -> lt(x,y) r7: if(true(),x,y) -> x r8: if(false(),x,y) -> y r9: div(x,|0|()) -> |0|() r10: div(|0|(),y) -> |0|() r11: div(s(x),s(y)) -> if(lt(x,y),|0|(),s(div(-(x,y),s(y)))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: -#_A(x1,x2) = ((1,1),(1,0)) x1 + ((1,1),(1,1)) x2 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: -#_A(x1,x2) = ((0,0),(1,0)) x1 + ((1,1),(0,1)) x2 s_A(x1) = ((0,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: lt#(s(x),s(y)) -> lt#(x,y) and R consists of: r1: -(x,|0|()) -> x r2: -(|0|(),s(y)) -> |0|() r3: -(s(x),s(y)) -> -(x,y) r4: lt(x,|0|()) -> false() r5: lt(|0|(),s(y)) -> true() r6: lt(s(x),s(y)) -> lt(x,y) r7: if(true(),x,y) -> x r8: if(false(),x,y) -> y r9: div(x,|0|()) -> |0|() r10: div(|0|(),y) -> |0|() r11: div(s(x),s(y)) -> if(lt(x,y),|0|(),s(div(-(x,y),s(y)))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: lt#_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(0,0)) x2 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: lt#_A(x1,x2) = ((0,0),(1,1)) x1 + ((0,0),(1,1)) x2 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.