YES We show the termination of the TRS R: g(A()) -> A() g(B()) -> A() g(B()) -> B() g(C()) -> A() g(C()) -> B() g(C()) -> C() foldf(x,nil()) -> x foldf(x,cons(y,z)) -> f(foldf(x,z),y) f(t,x) -> |f'|(t,g(x)) |f'|(triple(a,b,c),C()) -> triple(a,b,cons(C(),c)) |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) |f'|(triple(a,b,c),A()) -> |f''|(foldf(triple(cons(A(),a),nil(),c),b)) |f''|(triple(a,b,c)) -> foldf(triple(a,b,nil()),c) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: foldf#(x,cons(y,z)) -> f#(foldf(x,z),y) p2: foldf#(x,cons(y,z)) -> foldf#(x,z) p3: f#(t,x) -> |f'|#(t,g(x)) p4: f#(t,x) -> g#(x) p5: |f'|#(triple(a,b,c),B()) -> f#(triple(a,b,c),A()) p6: |f'|#(triple(a,b,c),A()) -> |f''|#(foldf(triple(cons(A(),a),nil(),c),b)) p7: |f'|#(triple(a,b,c),A()) -> foldf#(triple(cons(A(),a),nil(),c),b) p8: |f''|#(triple(a,b,c)) -> foldf#(triple(a,b,nil()),c) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldf(x,nil()) -> x r8: foldf(x,cons(y,z)) -> f(foldf(x,z),y) r9: f(t,x) -> |f'|(t,g(x)) r10: |f'|(triple(a,b,c),C()) -> triple(a,b,cons(C(),c)) r11: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r12: |f'|(triple(a,b,c),A()) -> |f''|(foldf(triple(cons(A(),a),nil(),c),b)) r13: |f''|(triple(a,b,c)) -> foldf(triple(a,b,nil()),c) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p5, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: foldf#(x,cons(y,z)) -> f#(foldf(x,z),y) p2: f#(t,x) -> |f'|#(t,g(x)) p3: |f'|#(triple(a,b,c),A()) -> foldf#(triple(cons(A(),a),nil(),c),b) p4: foldf#(x,cons(y,z)) -> foldf#(x,z) p5: |f'|#(triple(a,b,c),A()) -> |f''|#(foldf(triple(cons(A(),a),nil(),c),b)) p6: |f''|#(triple(a,b,c)) -> foldf#(triple(a,b,nil()),c) p7: |f'|#(triple(a,b,c),B()) -> f#(triple(a,b,c),A()) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldf(x,nil()) -> x r8: foldf(x,cons(y,z)) -> f(foldf(x,z),y) r9: f(t,x) -> |f'|(t,g(x)) r10: |f'|(triple(a,b,c),C()) -> triple(a,b,cons(C(),c)) r11: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r12: |f'|(triple(a,b,c),A()) -> |f''|(foldf(triple(cons(A(),a),nil(),c),b)) r13: |f''|(triple(a,b,c)) -> foldf(triple(a,b,nil()),c) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: foldf#_A(x1,x2) = ((1,1),(1,0)) x1 + ((1,1),(0,1)) x2 cons_A(x1,x2) = ((1,1),(0,0)) x1 + ((0,0),(1,1)) x2 + (1,10) f#_A(x1,x2) = ((1,1),(1,0)) x1 + x2 + (9,7) foldf_A(x1,x2) = x1 + ((1,1),(0,0)) x2 + (1,0) |f'|#_A(x1,x2) = ((1,1),(1,0)) x1 + x2 + (8,7) g_A(x1) = ((1,0),(1,1)) x1 + (0,1) triple_A(x1,x2,x3) = x1 + ((1,1),(0,0)) x2 + ((1,1),(0,0)) x3 + (0,1) A_A() = (1,2) nil_A() = (1,0) |f''|#_A(x1) = ((1,0),(1,0)) x1 + (3,1) B_A() = (3,1) |f''|_A(x1) = x1 + (3,1) |f'|_A(x1,x2) = x1 + x2 + (11,0) C_A() = (4,0) f_A(x1,x2) = x1 + ((1,1),(0,0)) x2 + (11,0) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: foldf#_A(x1,x2) = (62,21) cons_A(x1,x2) = ((0,0),(1,1)) x1 + (1,1) f#_A(x1,x2) = x1 + x2 + (22,22) foldf_A(x1,x2) = ((1,1),(0,0)) x2 + (39,7) |f'|#_A(x1,x2) = ((0,1),(1,1)) x1 + ((0,1),(0,1)) x2 g_A(x1) = ((0,0),(1,0)) x1 + (4,23) triple_A(x1,x2,x3) = ((1,1),(0,0)) x3 + (6,1) A_A() = (1,12) nil_A() = (1,1) |f''|#_A(x1) = (61,20) B_A() = (3,26) |f''|_A(x1) = ((0,0),(1,0)) x1 |f'|_A(x1,x2) = ((0,1),(0,0)) x1 + ((0,1),(0,0)) x2 + (9,1) C_A() = (1,1) f_A(x1,x2) = ((0,1),(0,0)) x1 + x2 + (33,1) The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p7 We remove them from the problem. Then no dependency pair remains.