YES We show the termination of the TRS R: is_empty(nil()) -> true() is_empty(cons(x,l)) -> false() hd(cons(x,l)) -> x tl(cons(x,l)) -> l append(l1,l2) -> ifappend(l1,l2,l1) ifappend(l1,l2,nil()) -> l2 ifappend(l1,l2,cons(x,l)) -> cons(x,append(l,l2)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: append#(l1,l2) -> ifappend#(l1,l2,l1) p2: ifappend#(l1,l2,cons(x,l)) -> append#(l,l2) and R consists of: r1: is_empty(nil()) -> true() r2: is_empty(cons(x,l)) -> false() r3: hd(cons(x,l)) -> x r4: tl(cons(x,l)) -> l r5: append(l1,l2) -> ifappend(l1,l2,l1) r6: ifappend(l1,l2,nil()) -> l2 r7: ifappend(l1,l2,cons(x,l)) -> cons(x,append(l,l2)) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: append#(l1,l2) -> ifappend#(l1,l2,l1) p2: ifappend#(l1,l2,cons(x,l)) -> append#(l,l2) and R consists of: r1: is_empty(nil()) -> true() r2: is_empty(cons(x,l)) -> false() r3: hd(cons(x,l)) -> x r4: tl(cons(x,l)) -> l r5: append(l1,l2) -> ifappend(l1,l2,l1) r6: ifappend(l1,l2,nil()) -> l2 r7: ifappend(l1,l2,cons(x,l)) -> cons(x,append(l,l2)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: append#_A(x1,x2) = ((1,1),(1,1)) x1 + (1,0) ifappend#_A(x1,x2,x3) = ((1,1),(1,1)) x3 cons_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: append#_A(x1,x2) = x1 + (3,0) ifappend#_A(x1,x2,x3) = ((1,1),(0,1)) x3 + (0,1) cons_A(x1,x2) = x1 + ((1,1),(1,1)) x2 + (1,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.