YES We show the termination of the TRS R: ack_in(|0|(),n) -> ack_out(s(n)) ack_in(s(m),|0|()) -> u11(ack_in(m,s(|0|()))) u11(ack_out(n)) -> ack_out(n) ack_in(s(m),s(n)) -> u21(ack_in(s(m),n),m) u21(ack_out(n),m) -> u22(ack_in(m,n)) u22(ack_out(n)) -> ack_out(n) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: ack_in#(s(m),|0|()) -> u11#(ack_in(m,s(|0|()))) p2: ack_in#(s(m),|0|()) -> ack_in#(m,s(|0|())) p3: ack_in#(s(m),s(n)) -> u21#(ack_in(s(m),n),m) p4: ack_in#(s(m),s(n)) -> ack_in#(s(m),n) p5: u21#(ack_out(n),m) -> u22#(ack_in(m,n)) p6: u21#(ack_out(n),m) -> ack_in#(m,n) and R consists of: r1: ack_in(|0|(),n) -> ack_out(s(n)) r2: ack_in(s(m),|0|()) -> u11(ack_in(m,s(|0|()))) r3: u11(ack_out(n)) -> ack_out(n) r4: ack_in(s(m),s(n)) -> u21(ack_in(s(m),n),m) r5: u21(ack_out(n),m) -> u22(ack_in(m,n)) r6: u22(ack_out(n)) -> ack_out(n) The estimated dependency graph contains the following SCCs: {p2, p3, p4, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ack_in#(s(m),|0|()) -> ack_in#(m,s(|0|())) p2: ack_in#(s(m),s(n)) -> ack_in#(s(m),n) p3: ack_in#(s(m),s(n)) -> u21#(ack_in(s(m),n),m) p4: u21#(ack_out(n),m) -> ack_in#(m,n) and R consists of: r1: ack_in(|0|(),n) -> ack_out(s(n)) r2: ack_in(s(m),|0|()) -> u11(ack_in(m,s(|0|()))) r3: u11(ack_out(n)) -> ack_out(n) r4: ack_in(s(m),s(n)) -> u21(ack_in(s(m),n),m) r5: u21(ack_out(n),m) -> u22(ack_in(m,n)) r6: u22(ack_out(n)) -> ack_out(n) The set of usable rules consists of r1, r2, r3, r4, r5, r6 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: ack_in#_A(x1,x2) = ((1,1),(0,0)) x1 s_A(x1) = ((1,1),(0,0)) x1 + (0,2) |0|_A() = (1,0) u21#_A(x1,x2) = x1 + ((1,1),(0,0)) x2 ack_in_A(x1,x2) = x1 + ((0,0),(1,1)) x2 + (2,1) ack_out_A(x1) = (0,1) u22_A(x1) = (1,1) u11_A(x1) = (1,1) u21_A(x1,x2) = (2,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: ack_in#_A(x1,x2) = ((1,1),(0,1)) x1 + (0,2) s_A(x1) = ((0,0),(1,1)) x1 + (1,2) |0|_A() = (1,1) u21#_A(x1,x2) = ((0,0),(1,0)) x1 + ((1,1),(0,1)) x2 + (1,0) ack_in_A(x1,x2) = (4,0) ack_out_A(x1) = (2,2) u22_A(x1) = (1,1) u11_A(x1) = (3,1) u21_A(x1,x2) = (0,0) The next rules are strictly ordered: p1, p3, p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: ack_in#(s(m),s(n)) -> ack_in#(s(m),n) and R consists of: r1: ack_in(|0|(),n) -> ack_out(s(n)) r2: ack_in(s(m),|0|()) -> u11(ack_in(m,s(|0|()))) r3: u11(ack_out(n)) -> ack_out(n) r4: ack_in(s(m),s(n)) -> u21(ack_in(s(m),n),m) r5: u21(ack_out(n),m) -> u22(ack_in(m,n)) r6: u22(ack_out(n)) -> ack_out(n) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ack_in#(s(m),s(n)) -> ack_in#(s(m),n) and R consists of: r1: ack_in(|0|(),n) -> ack_out(s(n)) r2: ack_in(s(m),|0|()) -> u11(ack_in(m,s(|0|()))) r3: u11(ack_out(n)) -> ack_out(n) r4: ack_in(s(m),s(n)) -> u21(ack_in(s(m),n),m) r5: u21(ack_out(n),m) -> u22(ack_in(m,n)) r6: u22(ack_out(n)) -> ack_out(n) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: ack_in#_A(x1,x2) = x1 + ((1,1),(1,0)) x2 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: ack_in#_A(x1,x2) = x1 + ((1,1),(1,1)) x2 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6 We remove them from the problem. Then no dependency pair remains.