YES We show the termination of the TRS R: app(app(lt(),app(s(),x)),app(s(),y)) -> app(app(lt(),x),y) app(app(lt(),|0|()),app(s(),y)) -> true() app(app(lt(),y),|0|()) -> false() app(app(eq(),x),x) -> true() app(app(eq(),app(s(),x)),|0|()) -> false() app(app(eq(),|0|()),app(s(),x)) -> false() app(app(member(),w),null()) -> false() app(app(member(),w),app(app(app(fork(),x),y),z)) -> app(app(app(if(),app(app(lt(),w),y)),app(app(member(),w),x)),app(app(app(if(),app(app(eq(),w),y)),true()),app(app(member(),w),z))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(lt(),app(s(),x)),app(s(),y)) -> app#(app(lt(),x),y) p2: app#(app(lt(),app(s(),x)),app(s(),y)) -> app#(lt(),x) p3: app#(app(member(),w),app(app(app(fork(),x),y),z)) -> app#(app(app(if(),app(app(lt(),w),y)),app(app(member(),w),x)),app(app(app(if(),app(app(eq(),w),y)),true()),app(app(member(),w),z))) p4: app#(app(member(),w),app(app(app(fork(),x),y),z)) -> app#(app(if(),app(app(lt(),w),y)),app(app(member(),w),x)) p5: app#(app(member(),w),app(app(app(fork(),x),y),z)) -> app#(if(),app(app(lt(),w),y)) p6: app#(app(member(),w),app(app(app(fork(),x),y),z)) -> app#(app(lt(),w),y) p7: app#(app(member(),w),app(app(app(fork(),x),y),z)) -> app#(lt(),w) p8: app#(app(member(),w),app(app(app(fork(),x),y),z)) -> app#(app(member(),w),x) p9: app#(app(member(),w),app(app(app(fork(),x),y),z)) -> app#(app(app(if(),app(app(eq(),w),y)),true()),app(app(member(),w),z)) p10: app#(app(member(),w),app(app(app(fork(),x),y),z)) -> app#(app(if(),app(app(eq(),w),y)),true()) p11: app#(app(member(),w),app(app(app(fork(),x),y),z)) -> app#(if(),app(app(eq(),w),y)) p12: app#(app(member(),w),app(app(app(fork(),x),y),z)) -> app#(app(eq(),w),y) p13: app#(app(member(),w),app(app(app(fork(),x),y),z)) -> app#(eq(),w) p14: app#(app(member(),w),app(app(app(fork(),x),y),z)) -> app#(app(member(),w),z) and R consists of: r1: app(app(lt(),app(s(),x)),app(s(),y)) -> app(app(lt(),x),y) r2: app(app(lt(),|0|()),app(s(),y)) -> true() r3: app(app(lt(),y),|0|()) -> false() r4: app(app(eq(),x),x) -> true() r5: app(app(eq(),app(s(),x)),|0|()) -> false() r6: app(app(eq(),|0|()),app(s(),x)) -> false() r7: app(app(member(),w),null()) -> false() r8: app(app(member(),w),app(app(app(fork(),x),y),z)) -> app(app(app(if(),app(app(lt(),w),y)),app(app(member(),w),x)),app(app(app(if(),app(app(eq(),w),y)),true()),app(app(member(),w),z))) The estimated dependency graph contains the following SCCs: {p8, p14} {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(member(),w),app(app(app(fork(),x),y),z)) -> app#(app(member(),w),z) p2: app#(app(member(),w),app(app(app(fork(),x),y),z)) -> app#(app(member(),w),x) and R consists of: r1: app(app(lt(),app(s(),x)),app(s(),y)) -> app(app(lt(),x),y) r2: app(app(lt(),|0|()),app(s(),y)) -> true() r3: app(app(lt(),y),|0|()) -> false() r4: app(app(eq(),x),x) -> true() r5: app(app(eq(),app(s(),x)),|0|()) -> false() r6: app(app(eq(),|0|()),app(s(),x)) -> false() r7: app(app(member(),w),null()) -> false() r8: app(app(member(),w),app(app(app(fork(),x),y),z)) -> app(app(app(if(),app(app(lt(),w),y)),app(app(member(),w),x)),app(app(app(if(),app(app(eq(),w),y)),true()),app(app(member(),w),z))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: app#_A(x1,x2) = x1 + ((1,0),(1,1)) x2 app_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,1),(1,0)) x2 member_A() = (0,0) fork_A() = (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: app#_A(x1,x2) = x1 + ((0,1),(1,0)) x2 app_A(x1,x2) = ((1,1),(0,0)) x1 + ((0,1),(1,1)) x2 + (0,1) member_A() = (0,0) fork_A() = (1,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(lt(),app(s(),x)),app(s(),y)) -> app#(app(lt(),x),y) and R consists of: r1: app(app(lt(),app(s(),x)),app(s(),y)) -> app(app(lt(),x),y) r2: app(app(lt(),|0|()),app(s(),y)) -> true() r3: app(app(lt(),y),|0|()) -> false() r4: app(app(eq(),x),x) -> true() r5: app(app(eq(),app(s(),x)),|0|()) -> false() r6: app(app(eq(),|0|()),app(s(),x)) -> false() r7: app(app(member(),w),null()) -> false() r8: app(app(member(),w),app(app(app(fork(),x),y),z)) -> app(app(app(if(),app(app(lt(),w),y)),app(app(member(),w),x)),app(app(app(if(),app(app(eq(),w),y)),true()),app(app(member(),w),z))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: app#_A(x1,x2) = ((1,1),(0,0)) x1 app_A(x1,x2) = x1 + ((1,1),(0,0)) x2 + (1,0) lt_A() = (1,0) s_A() = (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: app#_A(x1,x2) = (0,0) app_A(x1,x2) = (1,1) lt_A() = (1,1) s_A() = (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.