YES We show the termination of the TRS R: app(app(app(consif(),true()),x),ys) -> app(app(cons(),x),ys) app(app(app(consif(),false()),x),ys) -> ys app(app(filter(),f),nil()) -> nil() app(app(filter(),f),app(app(cons(),x),xs)) -> app(app(app(consif(),app(f,x)),x),app(app(filter(),f),xs)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(app(consif(),true()),x),ys) -> app#(app(cons(),x),ys) p2: app#(app(app(consif(),true()),x),ys) -> app#(cons(),x) p3: app#(app(filter(),f),app(app(cons(),x),xs)) -> app#(app(app(consif(),app(f,x)),x),app(app(filter(),f),xs)) p4: app#(app(filter(),f),app(app(cons(),x),xs)) -> app#(app(consif(),app(f,x)),x) p5: app#(app(filter(),f),app(app(cons(),x),xs)) -> app#(consif(),app(f,x)) p6: app#(app(filter(),f),app(app(cons(),x),xs)) -> app#(f,x) p7: app#(app(filter(),f),app(app(cons(),x),xs)) -> app#(app(filter(),f),xs) and R consists of: r1: app(app(app(consif(),true()),x),ys) -> app(app(cons(),x),ys) r2: app(app(app(consif(),false()),x),ys) -> ys r3: app(app(filter(),f),nil()) -> nil() r4: app(app(filter(),f),app(app(cons(),x),xs)) -> app(app(app(consif(),app(f,x)),x),app(app(filter(),f),xs)) The estimated dependency graph contains the following SCCs: {p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(filter(),f),app(app(cons(),x),xs)) -> app#(app(filter(),f),xs) p2: app#(app(filter(),f),app(app(cons(),x),xs)) -> app#(f,x) and R consists of: r1: app(app(app(consif(),true()),x),ys) -> app(app(cons(),x),ys) r2: app(app(app(consif(),false()),x),ys) -> ys r3: app(app(filter(),f),nil()) -> nil() r4: app(app(filter(),f),app(app(cons(),x),xs)) -> app(app(app(consif(),app(f,x)),x),app(app(filter(),f),xs)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: app#_A(x1,x2) = x1 + ((1,1),(0,0)) x2 app_A(x1,x2) = ((1,0),(1,1)) x1 + ((0,1),(1,1)) x2 filter_A() = (1,1) cons_A() = (0,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: app#_A(x1,x2) = ((0,1),(0,0)) x2 app_A(x1,x2) = ((0,0),(1,0)) x1 + (1,0) filter_A() = (1,1) cons_A() = (1,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.