YES We show the termination of the TRS R: app(app(neq(),|0|()),|0|()) -> false() app(app(neq(),|0|()),app(s(),y)) -> true() app(app(neq(),app(s(),x)),|0|()) -> true() app(app(neq(),app(s(),x)),app(s(),y)) -> app(app(neq(),x),y) app(app(filter(),f),nil()) -> nil() app(app(filter(),f),app(app(cons(),y),ys)) -> app(app(app(filtersub(),app(f,y)),f),app(app(cons(),y),ys)) app(app(app(filtersub(),true()),f),app(app(cons(),y),ys)) -> app(app(cons(),y),app(app(filter(),f),ys)) app(app(app(filtersub(),false()),f),app(app(cons(),y),ys)) -> app(app(filter(),f),ys) nonzero() -> app(filter(),app(neq(),|0|())) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(neq(),app(s(),x)),app(s(),y)) -> app#(app(neq(),x),y) p2: app#(app(neq(),app(s(),x)),app(s(),y)) -> app#(neq(),x) p3: app#(app(filter(),f),app(app(cons(),y),ys)) -> app#(app(app(filtersub(),app(f,y)),f),app(app(cons(),y),ys)) p4: app#(app(filter(),f),app(app(cons(),y),ys)) -> app#(app(filtersub(),app(f,y)),f) p5: app#(app(filter(),f),app(app(cons(),y),ys)) -> app#(filtersub(),app(f,y)) p6: app#(app(filter(),f),app(app(cons(),y),ys)) -> app#(f,y) p7: app#(app(app(filtersub(),true()),f),app(app(cons(),y),ys)) -> app#(app(cons(),y),app(app(filter(),f),ys)) p8: app#(app(app(filtersub(),true()),f),app(app(cons(),y),ys)) -> app#(app(filter(),f),ys) p9: app#(app(app(filtersub(),true()),f),app(app(cons(),y),ys)) -> app#(filter(),f) p10: app#(app(app(filtersub(),false()),f),app(app(cons(),y),ys)) -> app#(app(filter(),f),ys) p11: app#(app(app(filtersub(),false()),f),app(app(cons(),y),ys)) -> app#(filter(),f) p12: nonzero#() -> app#(filter(),app(neq(),|0|())) p13: nonzero#() -> app#(neq(),|0|()) and R consists of: r1: app(app(neq(),|0|()),|0|()) -> false() r2: app(app(neq(),|0|()),app(s(),y)) -> true() r3: app(app(neq(),app(s(),x)),|0|()) -> true() r4: app(app(neq(),app(s(),x)),app(s(),y)) -> app(app(neq(),x),y) r5: app(app(filter(),f),nil()) -> nil() r6: app(app(filter(),f),app(app(cons(),y),ys)) -> app(app(app(filtersub(),app(f,y)),f),app(app(cons(),y),ys)) r7: app(app(app(filtersub(),true()),f),app(app(cons(),y),ys)) -> app(app(cons(),y),app(app(filter(),f),ys)) r8: app(app(app(filtersub(),false()),f),app(app(cons(),y),ys)) -> app(app(filter(),f),ys) r9: nonzero() -> app(filter(),app(neq(),|0|())) The estimated dependency graph contains the following SCCs: {p3, p6, p8, p10} {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(filter(),f),app(app(cons(),y),ys)) -> app#(f,y) p2: app#(app(app(filtersub(),false()),f),app(app(cons(),y),ys)) -> app#(app(filter(),f),ys) p3: app#(app(filter(),f),app(app(cons(),y),ys)) -> app#(app(app(filtersub(),app(f,y)),f),app(app(cons(),y),ys)) p4: app#(app(app(filtersub(),true()),f),app(app(cons(),y),ys)) -> app#(app(filter(),f),ys) and R consists of: r1: app(app(neq(),|0|()),|0|()) -> false() r2: app(app(neq(),|0|()),app(s(),y)) -> true() r3: app(app(neq(),app(s(),x)),|0|()) -> true() r4: app(app(neq(),app(s(),x)),app(s(),y)) -> app(app(neq(),x),y) r5: app(app(filter(),f),nil()) -> nil() r6: app(app(filter(),f),app(app(cons(),y),ys)) -> app(app(app(filtersub(),app(f,y)),f),app(app(cons(),y),ys)) r7: app(app(app(filtersub(),true()),f),app(app(cons(),y),ys)) -> app(app(cons(),y),app(app(filter(),f),ys)) r8: app(app(app(filtersub(),false()),f),app(app(cons(),y),ys)) -> app(app(filter(),f),ys) r9: nonzero() -> app(filter(),app(neq(),|0|())) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: app#_A(x1,x2) = x1 app_A(x1,x2) = ((1,1),(0,0)) x2 + (1,1) filter_A() = (1,1) cons_A() = (1,1) filtersub_A() = (1,1) false_A() = (1,1) true_A() = (1,1) neq_A() = (1,1) |0|_A() = (1,1) s_A() = (1,1) nil_A() = (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: app#_A(x1,x2) = ((1,1),(0,0)) x1 app_A(x1,x2) = ((1,1),(0,0)) x2 + (1,1) filter_A() = (1,1) cons_A() = (1,1) filtersub_A() = (1,1) false_A() = (6,2) true_A() = (4,2) neq_A() = (1,1) |0|_A() = (3,1) s_A() = (1,1) nil_A() = (1,2) The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(app(filtersub(),false()),f),app(app(cons(),y),ys)) -> app#(app(filter(),f),ys) p2: app#(app(filter(),f),app(app(cons(),y),ys)) -> app#(app(app(filtersub(),app(f,y)),f),app(app(cons(),y),ys)) p3: app#(app(app(filtersub(),true()),f),app(app(cons(),y),ys)) -> app#(app(filter(),f),ys) and R consists of: r1: app(app(neq(),|0|()),|0|()) -> false() r2: app(app(neq(),|0|()),app(s(),y)) -> true() r3: app(app(neq(),app(s(),x)),|0|()) -> true() r4: app(app(neq(),app(s(),x)),app(s(),y)) -> app(app(neq(),x),y) r5: app(app(filter(),f),nil()) -> nil() r6: app(app(filter(),f),app(app(cons(),y),ys)) -> app(app(app(filtersub(),app(f,y)),f),app(app(cons(),y),ys)) r7: app(app(app(filtersub(),true()),f),app(app(cons(),y),ys)) -> app(app(cons(),y),app(app(filter(),f),ys)) r8: app(app(app(filtersub(),false()),f),app(app(cons(),y),ys)) -> app(app(filter(),f),ys) r9: nonzero() -> app(filter(),app(neq(),|0|())) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(app(filtersub(),false()),f),app(app(cons(),y),ys)) -> app#(app(filter(),f),ys) p2: app#(app(filter(),f),app(app(cons(),y),ys)) -> app#(app(app(filtersub(),app(f,y)),f),app(app(cons(),y),ys)) p3: app#(app(app(filtersub(),true()),f),app(app(cons(),y),ys)) -> app#(app(filter(),f),ys) and R consists of: r1: app(app(neq(),|0|()),|0|()) -> false() r2: app(app(neq(),|0|()),app(s(),y)) -> true() r3: app(app(neq(),app(s(),x)),|0|()) -> true() r4: app(app(neq(),app(s(),x)),app(s(),y)) -> app(app(neq(),x),y) r5: app(app(filter(),f),nil()) -> nil() r6: app(app(filter(),f),app(app(cons(),y),ys)) -> app(app(app(filtersub(),app(f,y)),f),app(app(cons(),y),ys)) r7: app(app(app(filtersub(),true()),f),app(app(cons(),y),ys)) -> app(app(cons(),y),app(app(filter(),f),ys)) r8: app(app(app(filtersub(),false()),f),app(app(cons(),y),ys)) -> app(app(filter(),f),ys) r9: nonzero() -> app(filter(),app(neq(),|0|())) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: app#_A(x1,x2) = x1 + ((0,1),(0,0)) x2 app_A(x1,x2) = ((0,0),(1,0)) x1 + x2 + (2,1) filtersub_A() = (0,1) false_A() = (1,1) cons_A() = (1,1) filter_A() = (0,1) true_A() = (1,1) neq_A() = (0,1) |0|_A() = (1,1) s_A() = (0,1) nil_A() = (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: app#_A(x1,x2) = ((1,0),(1,1)) x1 app_A(x1,x2) = (2,1) filtersub_A() = (1,1) false_A() = (1,2) cons_A() = (1,1) filter_A() = (1,1) true_A() = (1,2) neq_A() = (1,1) |0|_A() = (1,1) s_A() = (1,1) nil_A() = (3,2) The next rules are strictly ordered: p1, p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(filter(),f),app(app(cons(),y),ys)) -> app#(app(app(filtersub(),app(f,y)),f),app(app(cons(),y),ys)) and R consists of: r1: app(app(neq(),|0|()),|0|()) -> false() r2: app(app(neq(),|0|()),app(s(),y)) -> true() r3: app(app(neq(),app(s(),x)),|0|()) -> true() r4: app(app(neq(),app(s(),x)),app(s(),y)) -> app(app(neq(),x),y) r5: app(app(filter(),f),nil()) -> nil() r6: app(app(filter(),f),app(app(cons(),y),ys)) -> app(app(app(filtersub(),app(f,y)),f),app(app(cons(),y),ys)) r7: app(app(app(filtersub(),true()),f),app(app(cons(),y),ys)) -> app(app(cons(),y),app(app(filter(),f),ys)) r8: app(app(app(filtersub(),false()),f),app(app(cons(),y),ys)) -> app(app(filter(),f),ys) r9: nonzero() -> app(filter(),app(neq(),|0|())) The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(neq(),app(s(),x)),app(s(),y)) -> app#(app(neq(),x),y) and R consists of: r1: app(app(neq(),|0|()),|0|()) -> false() r2: app(app(neq(),|0|()),app(s(),y)) -> true() r3: app(app(neq(),app(s(),x)),|0|()) -> true() r4: app(app(neq(),app(s(),x)),app(s(),y)) -> app(app(neq(),x),y) r5: app(app(filter(),f),nil()) -> nil() r6: app(app(filter(),f),app(app(cons(),y),ys)) -> app(app(app(filtersub(),app(f,y)),f),app(app(cons(),y),ys)) r7: app(app(app(filtersub(),true()),f),app(app(cons(),y),ys)) -> app(app(cons(),y),app(app(filter(),f),ys)) r8: app(app(app(filtersub(),false()),f),app(app(cons(),y),ys)) -> app(app(filter(),f),ys) r9: nonzero() -> app(filter(),app(neq(),|0|())) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: app#_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,0)) x2 app_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,0)) x2 neq_A() = (1,0) s_A() = (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: app#_A(x1,x2) = x1 app_A(x1,x2) = ((0,0),(1,0)) x2 + (1,1) neq_A() = (1,1) s_A() = (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.