YES We show the termination of the TRS R: f(s(x),y) -> f(x,s(x)) f(x,s(y)) -> f(y,x) f(c(x),y) -> f(x,s(x)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x),y) -> f#(x,s(x)) p2: f#(x,s(y)) -> f#(y,x) p3: f#(c(x),y) -> f#(x,s(x)) and R consists of: r1: f(s(x),y) -> f(x,s(x)) r2: f(x,s(y)) -> f(y,x) r3: f(c(x),y) -> f(x,s(x)) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x),y) -> f#(x,s(x)) p2: f#(c(x),y) -> f#(x,s(x)) p3: f#(x,s(y)) -> f#(y,x) and R consists of: r1: f(s(x),y) -> f(x,s(x)) r2: f(x,s(y)) -> f(y,x) r3: f(c(x),y) -> f(x,s(x)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2) = ((1,1),(1,1)) x1 + x2 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) c_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2) = ((1,1),(1,1)) x1 + ((0,1),(0,1)) x2 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) c_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains.