YES We show the termination of the TRS R: plus(x,|0|()) -> x plus(x,s(y)) -> s(plus(x,y)) times(|0|(),y) -> |0|() times(x,|0|()) -> |0|() times(s(x),y) -> plus(times(x,y),y) p(s(s(x))) -> s(p(s(x))) p(s(|0|())) -> |0|() fac(s(x)) -> times(fac(p(s(x))),s(x)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: plus#(x,s(y)) -> plus#(x,y) p2: times#(s(x),y) -> plus#(times(x,y),y) p3: times#(s(x),y) -> times#(x,y) p4: p#(s(s(x))) -> p#(s(x)) p5: fac#(s(x)) -> times#(fac(p(s(x))),s(x)) p6: fac#(s(x)) -> fac#(p(s(x))) p7: fac#(s(x)) -> p#(s(x)) and R consists of: r1: plus(x,|0|()) -> x r2: plus(x,s(y)) -> s(plus(x,y)) r3: times(|0|(),y) -> |0|() r4: times(x,|0|()) -> |0|() r5: times(s(x),y) -> plus(times(x,y),y) r6: p(s(s(x))) -> s(p(s(x))) r7: p(s(|0|())) -> |0|() r8: fac(s(x)) -> times(fac(p(s(x))),s(x)) The estimated dependency graph contains the following SCCs: {p6} {p3} {p1} {p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: fac#(s(x)) -> fac#(p(s(x))) and R consists of: r1: plus(x,|0|()) -> x r2: plus(x,s(y)) -> s(plus(x,y)) r3: times(|0|(),y) -> |0|() r4: times(x,|0|()) -> |0|() r5: times(s(x),y) -> plus(times(x,y),y) r6: p(s(s(x))) -> s(p(s(x))) r7: p(s(|0|())) -> |0|() r8: fac(s(x)) -> times(fac(p(s(x))),s(x)) The set of usable rules consists of r6, r7 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: fac#_A(x1) = ((0,1),(0,0)) x1 s_A(x1) = ((0,1),(0,1)) x1 + (1,2) p_A(x1) = ((1,0),(1,0)) x1 |0|_A() = (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: fac#_A(x1) = (0,0) s_A(x1) = (1,2) p_A(x1) = (2,1) |0|_A() = (3,2) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: times#(s(x),y) -> times#(x,y) and R consists of: r1: plus(x,|0|()) -> x r2: plus(x,s(y)) -> s(plus(x,y)) r3: times(|0|(),y) -> |0|() r4: times(x,|0|()) -> |0|() r5: times(s(x),y) -> plus(times(x,y),y) r6: p(s(s(x))) -> s(p(s(x))) r7: p(s(|0|())) -> |0|() r8: fac(s(x)) -> times(fac(p(s(x))),s(x)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: times#_A(x1,x2) = ((1,0),(1,1)) x1 + x2 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: times#_A(x1,x2) = ((1,1),(1,1)) x1 + x2 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: plus#(x,s(y)) -> plus#(x,y) and R consists of: r1: plus(x,|0|()) -> x r2: plus(x,s(y)) -> s(plus(x,y)) r3: times(|0|(),y) -> |0|() r4: times(x,|0|()) -> |0|() r5: times(s(x),y) -> plus(times(x,y),y) r6: p(s(s(x))) -> s(p(s(x))) r7: p(s(|0|())) -> |0|() r8: fac(s(x)) -> times(fac(p(s(x))),s(x)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: plus#_A(x1,x2) = x1 + ((1,0),(1,1)) x2 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: plus#_A(x1,x2) = x1 + ((1,1),(1,1)) x2 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: p#(s(s(x))) -> p#(s(x)) and R consists of: r1: plus(x,|0|()) -> x r2: plus(x,s(y)) -> s(plus(x,y)) r3: times(|0|(),y) -> |0|() r4: times(x,|0|()) -> |0|() r5: times(s(x),y) -> plus(times(x,y),y) r6: p(s(s(x))) -> s(p(s(x))) r7: p(s(|0|())) -> |0|() r8: fac(s(x)) -> times(fac(p(s(x))),s(x)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: p#_A(x1) = x1 s_A(x1) = x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: p#_A(x1) = ((1,0),(1,0)) x1 s_A(x1) = ((0,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.