YES We show the termination of the TRS R: intlist(nil()) -> nil() int(s(x),|0|()) -> nil() int(x,x) -> cons(x,nil()) intlist(cons(x,y)) -> cons(s(x),intlist(y)) int(s(x),s(y)) -> intlist(int(x,y)) int(|0|(),s(y)) -> cons(|0|(),int(s(|0|()),s(y))) intlist(cons(x,nil())) -> cons(s(x),nil()) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: intlist#(cons(x,y)) -> intlist#(y) p2: int#(s(x),s(y)) -> intlist#(int(x,y)) p3: int#(s(x),s(y)) -> int#(x,y) p4: int#(|0|(),s(y)) -> int#(s(|0|()),s(y)) and R consists of: r1: intlist(nil()) -> nil() r2: int(s(x),|0|()) -> nil() r3: int(x,x) -> cons(x,nil()) r4: intlist(cons(x,y)) -> cons(s(x),intlist(y)) r5: int(s(x),s(y)) -> intlist(int(x,y)) r6: int(|0|(),s(y)) -> cons(|0|(),int(s(|0|()),s(y))) r7: intlist(cons(x,nil())) -> cons(s(x),nil()) The estimated dependency graph contains the following SCCs: {p3, p4} {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: int#(|0|(),s(y)) -> int#(s(|0|()),s(y)) p2: int#(s(x),s(y)) -> int#(x,y) and R consists of: r1: intlist(nil()) -> nil() r2: int(s(x),|0|()) -> nil() r3: int(x,x) -> cons(x,nil()) r4: intlist(cons(x,y)) -> cons(s(x),intlist(y)) r5: int(s(x),s(y)) -> intlist(int(x,y)) r6: int(|0|(),s(y)) -> cons(|0|(),int(s(|0|()),s(y))) r7: intlist(cons(x,nil())) -> cons(s(x),nil()) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: int#_A(x1,x2) = ((1,1),(1,1)) x2 |0|_A() = (1,1) s_A(x1) = ((0,1),(1,0)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: int#_A(x1,x2) = ((0,1),(0,1)) x2 |0|_A() = (1,1) s_A(x1) = (1,1) The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: int#(|0|(),s(y)) -> int#(s(|0|()),s(y)) and R consists of: r1: intlist(nil()) -> nil() r2: int(s(x),|0|()) -> nil() r3: int(x,x) -> cons(x,nil()) r4: intlist(cons(x,y)) -> cons(s(x),intlist(y)) r5: int(s(x),s(y)) -> intlist(int(x,y)) r6: int(|0|(),s(y)) -> cons(|0|(),int(s(|0|()),s(y))) r7: intlist(cons(x,nil())) -> cons(s(x),nil()) The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: intlist#(cons(x,y)) -> intlist#(y) and R consists of: r1: intlist(nil()) -> nil() r2: int(s(x),|0|()) -> nil() r3: int(x,x) -> cons(x,nil()) r4: intlist(cons(x,y)) -> cons(s(x),intlist(y)) r5: int(s(x),s(y)) -> intlist(int(x,y)) r6: int(|0|(),s(y)) -> cons(|0|(),int(s(|0|()),s(y))) r7: intlist(cons(x,nil())) -> cons(s(x),nil()) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: intlist#_A(x1) = ((1,1),(1,1)) x1 cons_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: intlist#_A(x1) = ((1,1),(1,1)) x1 cons_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7 We remove them from the problem. Then no dependency pair remains.