YES We show the termination of the TRS R: eq(|0|(),|0|()) -> true() eq(|0|(),s(x)) -> false() eq(s(x),|0|()) -> false() eq(s(x),s(y)) -> eq(x,y) or(true(),y) -> true() or(false(),y) -> y union(empty(),h) -> h union(edge(x,y,i),h) -> edge(x,y,union(i,h)) reach(x,y,empty(),h) -> false() reach(x,y,edge(u,v,i),h) -> if_reach_1(eq(x,u),x,y,edge(u,v,i),h) if_reach_1(true(),x,y,edge(u,v,i),h) -> if_reach_2(eq(y,v),x,y,edge(u,v,i),h) if_reach_2(true(),x,y,edge(u,v,i),h) -> true() if_reach_2(false(),x,y,edge(u,v,i),h) -> or(reach(x,y,i,h),reach(v,y,union(i,h),empty())) if_reach_1(false(),x,y,edge(u,v,i),h) -> reach(x,y,i,edge(u,v,h)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: eq#(s(x),s(y)) -> eq#(x,y) p2: union#(edge(x,y,i),h) -> union#(i,h) p3: reach#(x,y,edge(u,v,i),h) -> if_reach_1#(eq(x,u),x,y,edge(u,v,i),h) p4: reach#(x,y,edge(u,v,i),h) -> eq#(x,u) p5: if_reach_1#(true(),x,y,edge(u,v,i),h) -> if_reach_2#(eq(y,v),x,y,edge(u,v,i),h) p6: if_reach_1#(true(),x,y,edge(u,v,i),h) -> eq#(y,v) p7: if_reach_2#(false(),x,y,edge(u,v,i),h) -> or#(reach(x,y,i,h),reach(v,y,union(i,h),empty())) p8: if_reach_2#(false(),x,y,edge(u,v,i),h) -> reach#(x,y,i,h) p9: if_reach_2#(false(),x,y,edge(u,v,i),h) -> reach#(v,y,union(i,h),empty()) p10: if_reach_2#(false(),x,y,edge(u,v,i),h) -> union#(i,h) p11: if_reach_1#(false(),x,y,edge(u,v,i),h) -> reach#(x,y,i,edge(u,v,h)) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(x)) -> false() r3: eq(s(x),|0|()) -> false() r4: eq(s(x),s(y)) -> eq(x,y) r5: or(true(),y) -> true() r6: or(false(),y) -> y r7: union(empty(),h) -> h r8: union(edge(x,y,i),h) -> edge(x,y,union(i,h)) r9: reach(x,y,empty(),h) -> false() r10: reach(x,y,edge(u,v,i),h) -> if_reach_1(eq(x,u),x,y,edge(u,v,i),h) r11: if_reach_1(true(),x,y,edge(u,v,i),h) -> if_reach_2(eq(y,v),x,y,edge(u,v,i),h) r12: if_reach_2(true(),x,y,edge(u,v,i),h) -> true() r13: if_reach_2(false(),x,y,edge(u,v,i),h) -> or(reach(x,y,i,h),reach(v,y,union(i,h),empty())) r14: if_reach_1(false(),x,y,edge(u,v,i),h) -> reach(x,y,i,edge(u,v,h)) The estimated dependency graph contains the following SCCs: {p3, p5, p8, p9, p11} {p1} {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if_reach_2#(false(),x,y,edge(u,v,i),h) -> reach#(v,y,union(i,h),empty()) p2: reach#(x,y,edge(u,v,i),h) -> if_reach_1#(eq(x,u),x,y,edge(u,v,i),h) p3: if_reach_1#(false(),x,y,edge(u,v,i),h) -> reach#(x,y,i,edge(u,v,h)) p4: if_reach_1#(true(),x,y,edge(u,v,i),h) -> if_reach_2#(eq(y,v),x,y,edge(u,v,i),h) p5: if_reach_2#(false(),x,y,edge(u,v,i),h) -> reach#(x,y,i,h) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(x)) -> false() r3: eq(s(x),|0|()) -> false() r4: eq(s(x),s(y)) -> eq(x,y) r5: or(true(),y) -> true() r6: or(false(),y) -> y r7: union(empty(),h) -> h r8: union(edge(x,y,i),h) -> edge(x,y,union(i,h)) r9: reach(x,y,empty(),h) -> false() r10: reach(x,y,edge(u,v,i),h) -> if_reach_1(eq(x,u),x,y,edge(u,v,i),h) r11: if_reach_1(true(),x,y,edge(u,v,i),h) -> if_reach_2(eq(y,v),x,y,edge(u,v,i),h) r12: if_reach_2(true(),x,y,edge(u,v,i),h) -> true() r13: if_reach_2(false(),x,y,edge(u,v,i),h) -> or(reach(x,y,i,h),reach(v,y,union(i,h),empty())) r14: if_reach_1(false(),x,y,edge(u,v,i),h) -> reach(x,y,i,edge(u,v,h)) The set of usable rules consists of r1, r2, r3, r4, r7, r8 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: if_reach_2#_A(x1,x2,x3,x4,x5) = x1 + x3 + x4 + ((0,1),(0,0)) x5 false_A() = (3,1) edge_A(x1,x2,x3) = ((0,0),(1,0)) x2 + ((0,1),(0,1)) x3 + (1,0) reach#_A(x1,x2,x3,x4) = x2 + ((0,1),(0,0)) x3 + ((0,1),(0,0)) x4 + (3,0) union_A(x1,x2) = x1 + ((1,1),(0,1)) x2 + (1,0) empty_A() = (0,0) if_reach_1#_A(x1,x2,x3,x4,x5) = x3 + ((0,1),(0,0)) x4 + ((0,1),(0,0)) x5 + (3,0) eq_A(x1,x2) = ((0,0),(1,1)) x1 + ((1,0),(1,0)) x2 + (1,1) true_A() = (1,8) |0|_A() = (3,1) s_A(x1) = ((1,1),(1,1)) x1 + (3,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: if_reach_2#_A(x1,x2,x3,x4,x5) = ((0,1),(0,0)) x1 + ((0,1),(1,0)) x3 + ((0,1),(0,1)) x4 false_A() = (4,4) edge_A(x1,x2,x3) = (2,2) reach#_A(x1,x2,x3,x4) = ((0,1),(0,0)) x2 + (5,3) union_A(x1,x2) = (1,1) empty_A() = (1,1) if_reach_1#_A(x1,x2,x3,x4,x5) = ((0,1),(0,0)) x3 + (5,3) eq_A(x1,x2) = ((1,1),(1,1)) x2 + (1,1) true_A() = (4,4) |0|_A() = (1,1) s_A(x1) = ((1,1),(0,0)) x1 + (1,1) The next rules are strictly ordered: p1, p4, p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: reach#(x,y,edge(u,v,i),h) -> if_reach_1#(eq(x,u),x,y,edge(u,v,i),h) p2: if_reach_1#(false(),x,y,edge(u,v,i),h) -> reach#(x,y,i,edge(u,v,h)) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(x)) -> false() r3: eq(s(x),|0|()) -> false() r4: eq(s(x),s(y)) -> eq(x,y) r5: or(true(),y) -> true() r6: or(false(),y) -> y r7: union(empty(),h) -> h r8: union(edge(x,y,i),h) -> edge(x,y,union(i,h)) r9: reach(x,y,empty(),h) -> false() r10: reach(x,y,edge(u,v,i),h) -> if_reach_1(eq(x,u),x,y,edge(u,v,i),h) r11: if_reach_1(true(),x,y,edge(u,v,i),h) -> if_reach_2(eq(y,v),x,y,edge(u,v,i),h) r12: if_reach_2(true(),x,y,edge(u,v,i),h) -> true() r13: if_reach_2(false(),x,y,edge(u,v,i),h) -> or(reach(x,y,i,h),reach(v,y,union(i,h),empty())) r14: if_reach_1(false(),x,y,edge(u,v,i),h) -> reach(x,y,i,edge(u,v,h)) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: reach#(x,y,edge(u,v,i),h) -> if_reach_1#(eq(x,u),x,y,edge(u,v,i),h) p2: if_reach_1#(false(),x,y,edge(u,v,i),h) -> reach#(x,y,i,edge(u,v,h)) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(x)) -> false() r3: eq(s(x),|0|()) -> false() r4: eq(s(x),s(y)) -> eq(x,y) r5: or(true(),y) -> true() r6: or(false(),y) -> y r7: union(empty(),h) -> h r8: union(edge(x,y,i),h) -> edge(x,y,union(i,h)) r9: reach(x,y,empty(),h) -> false() r10: reach(x,y,edge(u,v,i),h) -> if_reach_1(eq(x,u),x,y,edge(u,v,i),h) r11: if_reach_1(true(),x,y,edge(u,v,i),h) -> if_reach_2(eq(y,v),x,y,edge(u,v,i),h) r12: if_reach_2(true(),x,y,edge(u,v,i),h) -> true() r13: if_reach_2(false(),x,y,edge(u,v,i),h) -> or(reach(x,y,i,h),reach(v,y,union(i,h),empty())) r14: if_reach_1(false(),x,y,edge(u,v,i),h) -> reach(x,y,i,edge(u,v,h)) The set of usable rules consists of r1, r2, r3, r4 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: reach#_A(x1,x2,x3,x4) = x2 + ((0,1),(0,0)) x3 + x4 + (1,0) edge_A(x1,x2,x3) = ((1,1),(1,1)) x1 + ((0,1),(1,1)) x2 + ((1,0),(1,1)) x3 + (1,3) if_reach_1#_A(x1,x2,x3,x4,x5) = x3 + ((0,1),(0,0)) x4 + x5 eq_A(x1,x2) = x2 + (1,1) false_A() = (1,1) |0|_A() = (1,1) true_A() = (0,0) s_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: reach#_A(x1,x2,x3,x4) = ((0,0),(1,1)) x2 + ((1,1),(0,1)) x4 edge_A(x1,x2,x3) = ((0,0),(1,0)) x1 + ((1,0),(1,1)) x3 + (1,2) if_reach_1#_A(x1,x2,x3,x4,x5) = x3 + (1,1) eq_A(x1,x2) = x2 + (1,1) false_A() = (3,2) |0|_A() = (1,1) true_A() = (3,2) s_A(x1) = (3,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: eq#(s(x),s(y)) -> eq#(x,y) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(x)) -> false() r3: eq(s(x),|0|()) -> false() r4: eq(s(x),s(y)) -> eq(x,y) r5: or(true(),y) -> true() r6: or(false(),y) -> y r7: union(empty(),h) -> h r8: union(edge(x,y,i),h) -> edge(x,y,union(i,h)) r9: reach(x,y,empty(),h) -> false() r10: reach(x,y,edge(u,v,i),h) -> if_reach_1(eq(x,u),x,y,edge(u,v,i),h) r11: if_reach_1(true(),x,y,edge(u,v,i),h) -> if_reach_2(eq(y,v),x,y,edge(u,v,i),h) r12: if_reach_2(true(),x,y,edge(u,v,i),h) -> true() r13: if_reach_2(false(),x,y,edge(u,v,i),h) -> or(reach(x,y,i,h),reach(v,y,union(i,h),empty())) r14: if_reach_1(false(),x,y,edge(u,v,i),h) -> reach(x,y,i,edge(u,v,h)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: eq#_A(x1,x2) = ((1,1),(0,0)) x1 + ((1,1),(1,1)) x2 s_A(x1) = ((1,1),(1,1)) x1 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: eq#_A(x1,x2) = ((0,0),(1,1)) x1 + ((0,0),(1,1)) x2 s_A(x1) = ((0,1),(0,1)) x1 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: union#(edge(x,y,i),h) -> union#(i,h) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(x)) -> false() r3: eq(s(x),|0|()) -> false() r4: eq(s(x),s(y)) -> eq(x,y) r5: or(true(),y) -> true() r6: or(false(),y) -> y r7: union(empty(),h) -> h r8: union(edge(x,y,i),h) -> edge(x,y,union(i,h)) r9: reach(x,y,empty(),h) -> false() r10: reach(x,y,edge(u,v,i),h) -> if_reach_1(eq(x,u),x,y,edge(u,v,i),h) r11: if_reach_1(true(),x,y,edge(u,v,i),h) -> if_reach_2(eq(y,v),x,y,edge(u,v,i),h) r12: if_reach_2(true(),x,y,edge(u,v,i),h) -> true() r13: if_reach_2(false(),x,y,edge(u,v,i),h) -> or(reach(x,y,i,h),reach(v,y,union(i,h),empty())) r14: if_reach_1(false(),x,y,edge(u,v,i),h) -> reach(x,y,i,edge(u,v,h)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^2 order: standard order interpretations: union#_A(x1,x2) = ((1,1),(1,1)) x1 + x2 edge_A(x1,x2,x3) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (1,1) 2. matrix interpretations: carrier: N^2 order: standard order interpretations: union#_A(x1,x2) = ((1,1),(1,1)) x1 + x2 edge_A(x1,x2,x3) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + ((1,1),(1,1)) x3 + (1,1) The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14 We remove them from the problem. Then no dependency pair remains.