YES We show the termination of the TRS R: a(lambda(x),y) -> lambda(a(x,|1|())) a(lambda(x),y) -> lambda(a(x,a(y,t()))) a(a(x,y),z) -> a(x,a(y,z)) lambda(x) -> x a(x,y) -> x a(x,y) -> y -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a#(lambda(x),y) -> lambda#(a(x,|1|())) p2: a#(lambda(x),y) -> a#(x,|1|()) p3: a#(lambda(x),y) -> lambda#(a(x,a(y,t()))) p4: a#(lambda(x),y) -> a#(x,a(y,t())) p5: a#(lambda(x),y) -> a#(y,t()) p6: a#(a(x,y),z) -> a#(x,a(y,z)) p7: a#(a(x,y),z) -> a#(y,z) and R consists of: r1: a(lambda(x),y) -> lambda(a(x,|1|())) r2: a(lambda(x),y) -> lambda(a(x,a(y,t()))) r3: a(a(x,y),z) -> a(x,a(y,z)) r4: lambda(x) -> x r5: a(x,y) -> x r6: a(x,y) -> y The estimated dependency graph contains the following SCCs: {p2, p4, p5, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a#(lambda(x),y) -> a#(x,|1|()) p2: a#(a(x,y),z) -> a#(y,z) p3: a#(a(x,y),z) -> a#(x,a(y,z)) p4: a#(lambda(x),y) -> a#(y,t()) p5: a#(lambda(x),y) -> a#(x,a(y,t())) and R consists of: r1: a(lambda(x),y) -> lambda(a(x,|1|())) r2: a(lambda(x),y) -> lambda(a(x,a(y,t()))) r3: a(a(x,y),z) -> a(x,a(y,z)) r4: lambda(x) -> x r5: a(x,y) -> x r6: a(x,y) -> y The set of usable rules consists of r1, r2, r3, r4, r5, r6 Take the monotone reduction pair: matrix interpretations: carrier: N^2 order: standard order interpretations: a#_A(x1,x2) = x1 + x2 lambda_A(x1) = x1 + (1,1) |1|_A() = (0,0) a_A(x1,x2) = x1 + x2 t_A() = (0,0) The next rules are strictly ordered: p1, p4, p5 r4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a#(a(x,y),z) -> a#(y,z) p2: a#(a(x,y),z) -> a#(x,a(y,z)) and R consists of: r1: a(lambda(x),y) -> lambda(a(x,|1|())) r2: a(lambda(x),y) -> lambda(a(x,a(y,t()))) r3: a(a(x,y),z) -> a(x,a(y,z)) r4: a(x,y) -> x r5: a(x,y) -> y The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a#(a(x,y),z) -> a#(y,z) p2: a#(a(x,y),z) -> a#(x,a(y,z)) and R consists of: r1: a(lambda(x),y) -> lambda(a(x,|1|())) r2: a(lambda(x),y) -> lambda(a(x,a(y,t()))) r3: a(a(x,y),z) -> a(x,a(y,z)) r4: a(x,y) -> x r5: a(x,y) -> y The set of usable rules consists of r1, r2, r3, r4, r5 Take the reduction pair: matrix interpretations: carrier: N^2 order: standard order interpretations: a#_A(x1,x2) = ((0,1),(1,0)) x1 a_A(x1,x2) = ((1,1),(0,1)) x1 + x2 + (1,1) lambda_A(x1) = (1,1) |1|_A() = (0,0) t_A() = (0,0) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.