YES We show the termination of the TRS R: active(f(X)) -> mark(g(h(f(X)))) active(f(X)) -> f(active(X)) active(h(X)) -> h(active(X)) f(mark(X)) -> mark(f(X)) h(mark(X)) -> mark(h(X)) proper(f(X)) -> f(proper(X)) proper(g(X)) -> g(proper(X)) proper(h(X)) -> h(proper(X)) f(ok(X)) -> ok(f(X)) g(ok(X)) -> ok(g(X)) h(ok(X)) -> ok(h(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(X)) -> g#(h(f(X))) p2: active#(f(X)) -> h#(f(X)) p3: active#(f(X)) -> f#(active(X)) p4: active#(f(X)) -> active#(X) p5: active#(h(X)) -> h#(active(X)) p6: active#(h(X)) -> active#(X) p7: f#(mark(X)) -> f#(X) p8: h#(mark(X)) -> h#(X) p9: proper#(f(X)) -> f#(proper(X)) p10: proper#(f(X)) -> proper#(X) p11: proper#(g(X)) -> g#(proper(X)) p12: proper#(g(X)) -> proper#(X) p13: proper#(h(X)) -> h#(proper(X)) p14: proper#(h(X)) -> proper#(X) p15: f#(ok(X)) -> f#(X) p16: g#(ok(X)) -> g#(X) p17: h#(ok(X)) -> h#(X) p18: top#(mark(X)) -> top#(proper(X)) p19: top#(mark(X)) -> proper#(X) p20: top#(ok(X)) -> top#(active(X)) p21: top#(ok(X)) -> active#(X) and R consists of: r1: active(f(X)) -> mark(g(h(f(X)))) r2: active(f(X)) -> f(active(X)) r3: active(h(X)) -> h(active(X)) r4: f(mark(X)) -> mark(f(X)) r5: h(mark(X)) -> mark(h(X)) r6: proper(f(X)) -> f(proper(X)) r7: proper(g(X)) -> g(proper(X)) r8: proper(h(X)) -> h(proper(X)) r9: f(ok(X)) -> ok(f(X)) r10: g(ok(X)) -> ok(g(X)) r11: h(ok(X)) -> ok(h(X)) r12: top(mark(X)) -> top(proper(X)) r13: top(ok(X)) -> top(active(X)) The estimated dependency graph contains the following SCCs: {p18, p20} {p4, p6} {p10, p12, p14} {p16} {p8, p17} {p7, p15} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: top#(ok(X)) -> top#(active(X)) p2: top#(mark(X)) -> top#(proper(X)) and R consists of: r1: active(f(X)) -> mark(g(h(f(X)))) r2: active(f(X)) -> f(active(X)) r3: active(h(X)) -> h(active(X)) r4: f(mark(X)) -> mark(f(X)) r5: h(mark(X)) -> mark(h(X)) r6: proper(f(X)) -> f(proper(X)) r7: proper(g(X)) -> g(proper(X)) r8: proper(h(X)) -> h(proper(X)) r9: f(ok(X)) -> ok(f(X)) r10: g(ok(X)) -> ok(g(X)) r11: h(ok(X)) -> ok(h(X)) r12: top(mark(X)) -> top(proper(X)) r13: top(ok(X)) -> top(active(X)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11 Take the reduction pair: matrix interpretations: carrier: N^2 order: standard order interpretations: top#_A(x1) = ((0,1),(1,0)) x1 ok_A(x1) = ((0,1),(1,0)) x1 active_A(x1) = ((0,1),(1,0)) x1 mark_A(x1) = ((1,1),(1,1)) x1 + (2,2) proper_A(x1) = ((1,1),(1,1)) x1 + (0,1) f_A(x1) = ((1,1),(1,1)) x1 + (2,2) h_A(x1) = ((1,1),(1,1)) x1 + (1,1) g_A(x1) = (0,0) The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: top#(ok(X)) -> top#(active(X)) and R consists of: r1: active(f(X)) -> mark(g(h(f(X)))) r2: active(f(X)) -> f(active(X)) r3: active(h(X)) -> h(active(X)) r4: f(mark(X)) -> mark(f(X)) r5: h(mark(X)) -> mark(h(X)) r6: proper(f(X)) -> f(proper(X)) r7: proper(g(X)) -> g(proper(X)) r8: proper(h(X)) -> h(proper(X)) r9: f(ok(X)) -> ok(f(X)) r10: g(ok(X)) -> ok(g(X)) r11: h(ok(X)) -> ok(h(X)) r12: top(mark(X)) -> top(proper(X)) r13: top(ok(X)) -> top(active(X)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: top#(ok(X)) -> top#(active(X)) and R consists of: r1: active(f(X)) -> mark(g(h(f(X)))) r2: active(f(X)) -> f(active(X)) r3: active(h(X)) -> h(active(X)) r4: f(mark(X)) -> mark(f(X)) r5: h(mark(X)) -> mark(h(X)) r6: proper(f(X)) -> f(proper(X)) r7: proper(g(X)) -> g(proper(X)) r8: proper(h(X)) -> h(proper(X)) r9: f(ok(X)) -> ok(f(X)) r10: g(ok(X)) -> ok(g(X)) r11: h(ok(X)) -> ok(h(X)) r12: top(mark(X)) -> top(proper(X)) r13: top(ok(X)) -> top(active(X)) The set of usable rules consists of r1, r2, r3, r4, r5, r9, r10, r11 Take the monotone reduction pair: matrix interpretations: carrier: N^2 order: standard order interpretations: top#_A(x1) = x1 ok_A(x1) = ((1,0),(1,0)) x1 + (1,0) active_A(x1) = ((1,0),(1,1)) x1 f_A(x1) = ((1,0),(1,0)) x1 mark_A(x1) = x1 h_A(x1) = ((1,0),(1,1)) x1 g_A(x1) = ((1,0),(1,0)) x1 The next rules are strictly ordered: p1 r6, r7, r8, r12, r13 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(h(X)) -> active#(X) p2: active#(f(X)) -> active#(X) and R consists of: r1: active(f(X)) -> mark(g(h(f(X)))) r2: active(f(X)) -> f(active(X)) r3: active(h(X)) -> h(active(X)) r4: f(mark(X)) -> mark(f(X)) r5: h(mark(X)) -> mark(h(X)) r6: proper(f(X)) -> f(proper(X)) r7: proper(g(X)) -> g(proper(X)) r8: proper(h(X)) -> h(proper(X)) r9: f(ok(X)) -> ok(f(X)) r10: g(ok(X)) -> ok(g(X)) r11: h(ok(X)) -> ok(h(X)) r12: top(mark(X)) -> top(proper(X)) r13: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^2 order: standard order interpretations: active#_A(x1) = ((1,0),(1,1)) x1 h_A(x1) = ((1,1),(1,1)) x1 + (1,1) f_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: proper#(h(X)) -> proper#(X) p2: proper#(g(X)) -> proper#(X) p3: proper#(f(X)) -> proper#(X) and R consists of: r1: active(f(X)) -> mark(g(h(f(X)))) r2: active(f(X)) -> f(active(X)) r3: active(h(X)) -> h(active(X)) r4: f(mark(X)) -> mark(f(X)) r5: h(mark(X)) -> mark(h(X)) r6: proper(f(X)) -> f(proper(X)) r7: proper(g(X)) -> g(proper(X)) r8: proper(h(X)) -> h(proper(X)) r9: f(ok(X)) -> ok(f(X)) r10: g(ok(X)) -> ok(g(X)) r11: h(ok(X)) -> ok(h(X)) r12: top(mark(X)) -> top(proper(X)) r13: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^2 order: standard order interpretations: proper#_A(x1) = ((1,0),(1,1)) x1 h_A(x1) = ((1,1),(1,1)) x1 + (1,1) g_A(x1) = ((1,1),(1,1)) x1 + (1,1) f_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1, p2, p3 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g#(ok(X)) -> g#(X) and R consists of: r1: active(f(X)) -> mark(g(h(f(X)))) r2: active(f(X)) -> f(active(X)) r3: active(h(X)) -> h(active(X)) r4: f(mark(X)) -> mark(f(X)) r5: h(mark(X)) -> mark(h(X)) r6: proper(f(X)) -> f(proper(X)) r7: proper(g(X)) -> g(proper(X)) r8: proper(h(X)) -> h(proper(X)) r9: f(ok(X)) -> ok(f(X)) r10: g(ok(X)) -> ok(g(X)) r11: h(ok(X)) -> ok(h(X)) r12: top(mark(X)) -> top(proper(X)) r13: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^2 order: standard order interpretations: g#_A(x1) = ((1,0),(1,0)) x1 ok_A(x1) = ((1,1),(1,1)) x1 + (1,0) The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: h#(mark(X)) -> h#(X) p2: h#(ok(X)) -> h#(X) and R consists of: r1: active(f(X)) -> mark(g(h(f(X)))) r2: active(f(X)) -> f(active(X)) r3: active(h(X)) -> h(active(X)) r4: f(mark(X)) -> mark(f(X)) r5: h(mark(X)) -> mark(h(X)) r6: proper(f(X)) -> f(proper(X)) r7: proper(g(X)) -> g(proper(X)) r8: proper(h(X)) -> h(proper(X)) r9: f(ok(X)) -> ok(f(X)) r10: g(ok(X)) -> ok(g(X)) r11: h(ok(X)) -> ok(h(X)) r12: top(mark(X)) -> top(proper(X)) r13: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^2 order: standard order interpretations: h#_A(x1) = ((1,0),(1,1)) x1 mark_A(x1) = ((1,1),(1,1)) x1 + (1,1) ok_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(mark(X)) -> f#(X) p2: f#(ok(X)) -> f#(X) and R consists of: r1: active(f(X)) -> mark(g(h(f(X)))) r2: active(f(X)) -> f(active(X)) r3: active(h(X)) -> h(active(X)) r4: f(mark(X)) -> mark(f(X)) r5: h(mark(X)) -> mark(h(X)) r6: proper(f(X)) -> f(proper(X)) r7: proper(g(X)) -> g(proper(X)) r8: proper(h(X)) -> h(proper(X)) r9: f(ok(X)) -> ok(f(X)) r10: g(ok(X)) -> ok(g(X)) r11: h(ok(X)) -> ok(h(X)) r12: top(mark(X)) -> top(proper(X)) r13: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1) = ((1,0),(1,1)) x1 mark_A(x1) = ((1,1),(1,1)) x1 + (1,1) ok_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13 We remove them from the problem. Then no dependency pair remains.