YES

We show the termination of the TRS R:

  first(|0|(),X) -> nil()
  first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
  from(X) -> cons(X,n__from(s(X)))
  first(X1,X2) -> n__first(X1,X2)
  from(X) -> n__from(X)
  activate(n__first(X1,X2)) -> first(X1,X2)
  activate(n__from(X)) -> from(X)
  activate(X) -> X

-- SCC decomposition.

Consider the dependency pair problem (P, R), where P consists of

p1: first#(s(X),cons(Y,Z)) -> activate#(Z)
p2: activate#(n__first(X1,X2)) -> first#(X1,X2)
p3: activate#(n__from(X)) -> from#(X)

and R consists of:

r1: first(|0|(),X) -> nil()
r2: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
r3: from(X) -> cons(X,n__from(s(X)))
r4: first(X1,X2) -> n__first(X1,X2)
r5: from(X) -> n__from(X)
r6: activate(n__first(X1,X2)) -> first(X1,X2)
r7: activate(n__from(X)) -> from(X)
r8: activate(X) -> X

The estimated dependency graph contains the following SCCs:

  {p1, p2}


-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: first#(s(X),cons(Y,Z)) -> activate#(Z)
p2: activate#(n__first(X1,X2)) -> first#(X1,X2)

and R consists of:

r1: first(|0|(),X) -> nil()
r2: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
r3: from(X) -> cons(X,n__from(s(X)))
r4: first(X1,X2) -> n__first(X1,X2)
r5: from(X) -> n__from(X)
r6: activate(n__first(X1,X2)) -> first(X1,X2)
r7: activate(n__from(X)) -> from(X)
r8: activate(X) -> X

The set of usable rules consists of

  (no rules)

Take the reduction pair:

  matrix interpretations:
  
    carrier: N^2
    order: standard order
    interpretations:
      first#_A(x1,x2) = ((0,1),(0,0)) x1 + ((1,0),(1,0)) x2 + (2,0)
      s_A(x1) = ((1,1),(0,0)) x1 + (1,1)
      cons_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1)
      activate#_A(x1) = ((1,1),(1,1)) x1
      n__first_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1)

The next rules are strictly ordered:

  p1

We remove them from the problem.

-- SCC decomposition.

Consider the dependency pair problem (P, R), where P consists of

p1: activate#(n__first(X1,X2)) -> first#(X1,X2)

and R consists of:

r1: first(|0|(),X) -> nil()
r2: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
r3: from(X) -> cons(X,n__from(s(X)))
r4: first(X1,X2) -> n__first(X1,X2)
r5: from(X) -> n__from(X)
r6: activate(n__first(X1,X2)) -> first(X1,X2)
r7: activate(n__from(X)) -> from(X)
r8: activate(X) -> X

The estimated dependency graph contains the following SCCs:

  (no SCCs)