YES We show the termination of the TRS R: a__c() -> a__f(g(c())) a__f(g(X)) -> g(X) mark(c()) -> a__c() mark(f(X)) -> a__f(X) mark(g(X)) -> g(X) a__c() -> c() a__f(X) -> f(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__c#() -> a__f#(g(c())) p2: mark#(c()) -> a__c#() p3: mark#(f(X)) -> a__f#(X) and R consists of: r1: a__c() -> a__f(g(c())) r2: a__f(g(X)) -> g(X) r3: mark(c()) -> a__c() r4: mark(f(X)) -> a__f(X) r5: mark(g(X)) -> g(X) r6: a__c() -> c() r7: a__f(X) -> f(X) The estimated dependency graph contains the following SCCs: (no SCCs)