YES We show the termination of the TRS R: from(X) -> cons(X,n__from(s(X))) sel(|0|(),cons(X,Y)) -> X sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) from(X) -> n__from(X) activate(n__from(X)) -> from(X) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: sel#(s(X),cons(Y,Z)) -> sel#(X,activate(Z)) p2: sel#(s(X),cons(Y,Z)) -> activate#(Z) p3: activate#(n__from(X)) -> from#(X) and R consists of: r1: from(X) -> cons(X,n__from(s(X))) r2: sel(|0|(),cons(X,Y)) -> X r3: sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) r4: from(X) -> n__from(X) r5: activate(n__from(X)) -> from(X) r6: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sel#(s(X),cons(Y,Z)) -> sel#(X,activate(Z)) and R consists of: r1: from(X) -> cons(X,n__from(s(X))) r2: sel(|0|(),cons(X,Y)) -> X r3: sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) r4: from(X) -> n__from(X) r5: activate(n__from(X)) -> from(X) r6: activate(X) -> X The set of usable rules consists of r1, r4, r5, r6 Take the reduction pair: matrix interpretations: carrier: N^2 order: standard order interpretations: sel#_A(x1,x2) = ((1,0),(1,0)) x1 + ((0,0),(1,0)) x2 s_A(x1) = x1 + (1,0) cons_A(x1,x2) = ((1,1),(1,0)) x2 activate_A(x1) = ((1,1),(1,1)) x1 + (1,1) from_A(x1) = ((1,1),(1,1)) x1 + (1,1) n__from_A(x1) = ((1,1),(0,1)) x1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.