YES We show the termination of the TRS R: f(f(a())) -> c(n__f(n__g(n__f(n__a())))) f(X) -> n__f(X) g(X) -> n__g(X) a() -> n__a() activate(n__f(X)) -> f(activate(X)) activate(n__g(X)) -> g(activate(X)) activate(n__a()) -> a() activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__f(X)) -> f#(activate(X)) p2: activate#(n__f(X)) -> activate#(X) p3: activate#(n__g(X)) -> g#(activate(X)) p4: activate#(n__g(X)) -> activate#(X) p5: activate#(n__a()) -> a#() and R consists of: r1: f(f(a())) -> c(n__f(n__g(n__f(n__a())))) r2: f(X) -> n__f(X) r3: g(X) -> n__g(X) r4: a() -> n__a() r5: activate(n__f(X)) -> f(activate(X)) r6: activate(n__g(X)) -> g(activate(X)) r7: activate(n__a()) -> a() r8: activate(X) -> X The estimated dependency graph contains the following SCCs: {p2, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__f(X)) -> activate#(X) p2: activate#(n__g(X)) -> activate#(X) and R consists of: r1: f(f(a())) -> c(n__f(n__g(n__f(n__a())))) r2: f(X) -> n__f(X) r3: g(X) -> n__g(X) r4: a() -> n__a() r5: activate(n__f(X)) -> f(activate(X)) r6: activate(n__g(X)) -> g(activate(X)) r7: activate(n__a()) -> a() r8: activate(X) -> X The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^2 order: standard order interpretations: activate#_A(x1) = ((1,0),(1,1)) x1 n__f_A(x1) = ((1,1),(1,1)) x1 + (1,1) n__g_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8 We remove them from the problem. Then no dependency pair remains.