YES We show the termination of the TRS R: active(g(X)) -> mark(h(X)) active(c()) -> mark(d()) active(h(d())) -> mark(g(c())) proper(g(X)) -> g(proper(X)) proper(h(X)) -> h(proper(X)) proper(c()) -> ok(c()) proper(d()) -> ok(d()) g(ok(X)) -> ok(g(X)) h(ok(X)) -> ok(h(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(g(X)) -> h#(X) p2: active#(h(d())) -> g#(c()) p3: proper#(g(X)) -> g#(proper(X)) p4: proper#(g(X)) -> proper#(X) p5: proper#(h(X)) -> h#(proper(X)) p6: proper#(h(X)) -> proper#(X) p7: g#(ok(X)) -> g#(X) p8: h#(ok(X)) -> h#(X) p9: top#(mark(X)) -> top#(proper(X)) p10: top#(mark(X)) -> proper#(X) p11: top#(ok(X)) -> top#(active(X)) p12: top#(ok(X)) -> active#(X) and R consists of: r1: active(g(X)) -> mark(h(X)) r2: active(c()) -> mark(d()) r3: active(h(d())) -> mark(g(c())) r4: proper(g(X)) -> g(proper(X)) r5: proper(h(X)) -> h(proper(X)) r6: proper(c()) -> ok(c()) r7: proper(d()) -> ok(d()) r8: g(ok(X)) -> ok(g(X)) r9: h(ok(X)) -> ok(h(X)) r10: top(mark(X)) -> top(proper(X)) r11: top(ok(X)) -> top(active(X)) The estimated dependency graph contains the following SCCs: {p9, p11} {p4, p6} {p8} {p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: top#(ok(X)) -> top#(active(X)) p2: top#(mark(X)) -> top#(proper(X)) and R consists of: r1: active(g(X)) -> mark(h(X)) r2: active(c()) -> mark(d()) r3: active(h(d())) -> mark(g(c())) r4: proper(g(X)) -> g(proper(X)) r5: proper(h(X)) -> h(proper(X)) r6: proper(c()) -> ok(c()) r7: proper(d()) -> ok(d()) r8: g(ok(X)) -> ok(g(X)) r9: h(ok(X)) -> ok(h(X)) r10: top(mark(X)) -> top(proper(X)) r11: top(ok(X)) -> top(active(X)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9 Take the monotone reduction pair: matrix interpretations: carrier: N^2 order: standard order interpretations: top#_A(x1) = ((1,1),(1,1)) x1 ok_A(x1) = x1 + (2,0) active_A(x1) = ((1,1),(0,0)) x1 + (0,1) mark_A(x1) = ((1,1),(0,0)) x1 + (4,0) proper_A(x1) = x1 + (2,1) g_A(x1) = x1 + (5,1) h_A(x1) = x1 + (1,1) c_A() = (0,13) d_A() = (8,1) The next rules are strictly ordered: p1, p2 r10, r11 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: proper#(h(X)) -> proper#(X) p2: proper#(g(X)) -> proper#(X) and R consists of: r1: active(g(X)) -> mark(h(X)) r2: active(c()) -> mark(d()) r3: active(h(d())) -> mark(g(c())) r4: proper(g(X)) -> g(proper(X)) r5: proper(h(X)) -> h(proper(X)) r6: proper(c()) -> ok(c()) r7: proper(d()) -> ok(d()) r8: g(ok(X)) -> ok(g(X)) r9: h(ok(X)) -> ok(h(X)) r10: top(mark(X)) -> top(proper(X)) r11: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^2 order: standard order interpretations: proper#_A(x1) = ((1,0),(1,1)) x1 h_A(x1) = ((1,1),(1,1)) x1 + (1,1) g_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: h#(ok(X)) -> h#(X) and R consists of: r1: active(g(X)) -> mark(h(X)) r2: active(c()) -> mark(d()) r3: active(h(d())) -> mark(g(c())) r4: proper(g(X)) -> g(proper(X)) r5: proper(h(X)) -> h(proper(X)) r6: proper(c()) -> ok(c()) r7: proper(d()) -> ok(d()) r8: g(ok(X)) -> ok(g(X)) r9: h(ok(X)) -> ok(h(X)) r10: top(mark(X)) -> top(proper(X)) r11: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^2 order: standard order interpretations: h#_A(x1) = ((1,0),(1,0)) x1 ok_A(x1) = ((1,1),(1,1)) x1 + (1,0) The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g#(ok(X)) -> g#(X) and R consists of: r1: active(g(X)) -> mark(h(X)) r2: active(c()) -> mark(d()) r3: active(h(d())) -> mark(g(c())) r4: proper(g(X)) -> g(proper(X)) r5: proper(h(X)) -> h(proper(X)) r6: proper(c()) -> ok(c()) r7: proper(d()) -> ok(d()) r8: g(ok(X)) -> ok(g(X)) r9: h(ok(X)) -> ok(h(X)) r10: top(mark(X)) -> top(proper(X)) r11: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^2 order: standard order interpretations: g#_A(x1) = ((1,0),(1,0)) x1 ok_A(x1) = ((1,1),(1,1)) x1 + (1,0) The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11 We remove them from the problem. Then no dependency pair remains.